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ABSTRACT OF DISSERTATION

Neutrinos o�er the �rst glimpse into physics beyond the Standard Model. The
observation of neutrino oscillation leads incontrovertably to the conclusion that
neutrinos have mass whereas the Standard Model explicitly forbids it; therefore
new theories are necessary. Supersymmetry solves many of the problems in the
Standard Model but often is formulated to include R-parity: this Z2 symmetry
di�erentiates between particles and their supersymmetric partners and is related
to the conservation of baryon and lepton number. However, if we allow R-parity to
be violated by breaking lepton number, we gain access to additional theories that
can account for neutrino masses. Theories with R-parity violation have distinct
phenomenological signals that may be observed in the near future.
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1 Introduction

Though neutrinos are extremely common in our universe, relatively little is known
about them. Neutrino oscillation was proposed as a solution to the solar neutrino
problem1 in the 1960s, but it was not until 2003 that this process was experimen-
tally con�rmed. This observation has far-reaching consequences: the Standard
Model requires that neutrinos are massless but the existence of oscillation requires
that they are massive. One method of giving mass to neutrinos is the seesaw mech-
anism. In this mechanism, neutrinos must be Majorana particles which is another
trait not predicted by the Standard Model. To resolve these contradictions, we
must look to theories beyond the Standard Model.

Not only are neutrino masses unexplained, but the Standard Model also, no-
tably, does not include gravity. Unlike the electroweak force which operates at
around the TeV scale, gravity is at around 1018 GeV. This gigantic discrepency is
called the gauge hierarchy problem and is resolved by supersymmetry. Supersym-
metry predicts a bosonic partner for every fermion in the Standard Model and a
fermionic partner for every Standard Model boson; these new contributions cancel
out the problematic ultraviolet terms. We construct the supersymmetric theory
with the minimal number of new particles, called the MSSM. While this theory
solves many of the problems present in the Standard Model, some new issues arise.
Most importantly we have the µ problem, which questions why a supersymmetry-
conserving parameter and a supersymmetry-violating one are related. In addition
the MSSM, without any restrictions, predicts an unrealistically fast proton de-
cay. To solve this problem, R-parity is implemented. R-parity assigns a quantum
number of +1 to Standard Model particles and −1 to supersymmetric particles,
and by requiring this number to be conserved the problematic interaction terms
are forbidden. R-parity can be expressed in terms of baryon and lepton number,
speci�cally the di�erence B−L between the two. Because of this di�erence, either
baryon or lepton number is allowed to be violated at any given time, which proves
to be important for the generation of neutrino mass.

While R-parity is convenient, it is merely an ad hoc addition to the MSSM. If
we permit R-parity to be violated, new terms are allowed in the Lagrangian that
lead to the generation of neutrino mass. These terms can be either bilinear or
trilinear, and arise either explicitly or spontaneously. Spontaneous R-parity vio-
lation requires adding a new symmetry to the Standard Model gauge group and
breaking it, leading to the creation of a new particle. The new terms contribute at
the tree and loop level, and several di�erent theories can explain how these con-
tributions lead to accurate neutrino masses and mixings. The collider signatures
of these theories are distinct from those of R-parity conserving theories, and may

1The observation of one third of the expected number of neutrinos from the sun.
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be observed at the upgraded LHC and future projects.
In this paper, I will begin by describing neutrinos in the context of the Standard

Model and explaining why they do not have mass. In contrast, I will show how
the process of oscillations necessitates neutrino mass, in both the simpli�ed two-
�avor and three-�avor mixing cases. Oscillations prove that neutrinos must have
mass; this mass can be generated through the seesaw mechanism. I will then
motivate and introduce supersymmetry and the minimal supersymmetric Standard
Model. With this framework, I discuss R-parity and how it can be violated. Many
expansions of the R-parity violating MSSM are proposed in the literature, but I
will focus on a representative few to explain how the �eld and symmetry content
of the theory leads to the experimentally correct values for neutrino masses and
mixings. Finally, I brie�y discuss how these theories may be veri�ed in collider
experiments.

2 Neutrinos in the Standard Model

2.1 The Standard Model

The Standard Model describes, to the best of our current knowledge, the most
fundamental particle content and interactions that make up the universe. Each el-
ement of the Standard Model has been rigorously tested and con�rmed, yet various
experimental results indicate that it is not fully complete. One such observation
is neutrino oscillations, which we shall discuss later. In this section, however, we
shall establish the basics of the Standard Model and explain the role of neutrinos
within it.

2.1.1 Particle Content

The Standard Model is comprised of three types of interactions� strong, weak and
electromagnetic� and the particles that participate in these interactions. Each
of these interactions is described by a quantum �eld theory, which in turn can
be represented as gauge theories coupled to fermions [50]. The gauge group for
the strong interaction is SU(3), the group for weak interactions is SU(2) and the
group for electromagnetic interactions is U(1). The force-carrying bosons in these
interactions are associated with the generators of these groups, as summarized in
Table 1 [11]. Therefore, the gauge group of the entire Standard Model is:

GSM = SU(3)C × SU(2)L × U(1)Y . (1)

In this notation, the subscript C refers to �color� which is the quantum number
that quarks carry. The subscript L indicates that only left-handed fermions carry
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Strong Weak Electromagnetic

Group SU(3) SU(2) U(1)
Generator Gα

µ Wα
µ Bµ

number α = 1, .., 8 a = 1, 2, 3 1
name gluon W±, Z0 photon

Table 1: A list of the Standard Model groups with their corresponding generators.

this particular quantum number, and the subscript Y distinguishes between this
group which has the weak hypercharge quantum number Y and the di�erent group
U(1)EM which has the electrical charge quantum number Q [11].

In Table 1, we see that there are 12 gauge bosons, which are by de�nition
spin-one particles. In addition, the Standard Model contains spin-half particles:
the fermions. The six quarks� u, d, c, s, t, b� take part in strong force interactions,
while the six leptons� e, µ, τ, νe, νµ, ντ� do not. The fermions fall into three distinct
generations, where each is a more massive copy of the last. Each generation
interacts with the gauge bosons in the same way. The fermions of most interest to
us will be the neutrinos: νe, νµ and ντ .

In addition to the quantum numbers that fermions possess (Q, color, etc.), they
also have a value related to lepton and baryon number. These are simple: each
lepton has a value of n` = +1 and each antilepton has a value of n` = −1; likewise,
each quark has a value of nq = +1 and each antiquark has a value of nq = −1 [29].
The n` contribute to the lepton number, L, which is number of leptons minus the
number of antileptons and is conserved in interactions:

L =
∑

n`. (2)

A �quark number� could be de�ned in exactly the same way, but since we only
observe quarks in combination it makes more sense to de�ne a baryon number2 B:

B =
1

3

∑
nq. (3)

In addition to these conservation laws, lepton �avor number is also conserved in
the Standard Model. There are three �avor numbers: electron number Le, muon
number Lµ and tau number Lτ ; as expected, only the lepton and its neutrino in
a certain generation have a value of Lm = 1 [29]. These and the other quantum
numbers for the fermions are summarized in Table 2. Because there is no lep-

2Since mesons are composed of a quark and an antiquark, they have no quark number; meson
number therefore is not necessarily conserved in interactions.
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1st generation 2nd generation 3rd generation

Quark u d c s t b
Q +2/3 −1/3 +2/3 −1/3 +2/3 −1/3
nq 1 1 1 1 1 1

Lepton e νe µ νµ τ ντ
Q −1 0 −1 0 −1 0
nq 1 1 1 1 1 1
Le 1 1 0 0 0 0
Lµ 0 0 1 1 0 0
Lτ 0 0 0 0 1 1

Table 2: A summary of the Standard Model fermions, their electrical charge, and
their quark/lepton number. Note that the antifermions have opposite values.

ton �avor mixing in the Standard Model, each of the �avor numbers is conserved
independently. Quarks, on the other hand, have �avor mixing according to the
Cabbibo-Kobayashi-Maskawa matrix and so have only approximate generational
conservation laws [11, 29]. As we will see, the lack of mixing in the lepton sec-
tor depends on neutrinos being massless, and so lepton �avor conservation also
becomes approximate when neutrino mass is taken into account.

To describe the interactions of the fermions, we must look to their transfor-
mation properties in the gauge group of the Standard Model, given in Equation
1 [11]. To do this, we write the spin-half �elds as spinors, either Dirac (expressed
in lower-case letters, as in Table 2) or, more commonly, Majorana (expressed in
capital or script letters).3 Since each generation interacts in the same way, we
indicate this fact by labelling the �elds as in Table 3 [11]. We will focus on the
lepton sector here: in the Standard Model, leptons are represented by two Majo-
rana �elds Em(x) and Em(x). These �elds are related to the Dirac spinor em(x),
which is used to represent the lepton �eld in quantum electrodynamics, by right-
and left-handed projections [11]:

em(x) = PLEm + PREm. (4)

As a result, Em is considered the left-handed electron �eld and Em the right-
handed one. The left-handed �eld appears in the left-handed projection of an
SU(2)L doublet Lm(x) along with the neutrino �eld νm:

PLLm(x) =

(
PLνm
PLEm

)
(5)

3This notation is the same as in Ref. [11].

4



m = 1 m = 2 m = 3
em e µ τ
νm νe νµ ντ
um u c t
dm d s b

Table 3: Notation for fermion generations.

The right-handed electron �eld Em is a singlet with respect to the Standard Model
gauge group (as the right-handed neutrino �eld would be)4 [11].

Now that the lepton �elds are de�ned, we can describe their transformations.
To do this, we give the representations of the gauge group in which the fermion
transforms: for SU(3)C and SU(2)L, the representation is labelled with its di-
mension, and for U(1)Y the representation is labelled with the eigenvalue of the
generator Y [11]. Therefore, the lepton sector [11]:

PLLm(x) =

(
PLνm
PLEm

)
transforms as

(
1,2,−1

2

)
and

PREm transforms as (1,1,−1) .

Clearly, the leptons transform in the trivial representation of SU(3)C as they do
not strongly interact. The Lm doublet transforms as a two-dimensional spinor,
while the Em singlet transforms trivially.5 The right-handed components of the
Majorana spinors, PRLm and PLEm, transform in the complex conjugate represen-
tations since they are the complex conjugates of the left-handed components [11].
As a result, the Y eigenvalues take on the opposite sign while the other represen-
tations remain the same.

2.1.2 The Standard Model Lagrangian

The transformations in the previous section describe the invariance of the La-
grangian under certain symmetries,

δLm =

[(
− i

2
ω1(x) +

i

2
ωa2(x)τa

)
PL +

(
− i

2
ω1(x)− i

2
ωa2(x)τ ∗a

)
PR

]
Lm (6)

4Only left-handed helicity neutrinos have been experimentally observed, resulting in the weak
force violating parity conservation [55].

5If the Standard Model contained a right-handed neutrino �eld, PRNm would transform
similarly as (1,1, 0).
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and
δEm = [iω1(x)PL − iω1(x)PR]Em, (7)

where ω(x) is a scalar function and Ta = 1
2
τa are the generators of SU(2)L (τa are

the 2 × 2 Pauli matrices) [11]. The full Standard Model Lagrangian that these
gauge transformations apply to is

LSM = Lint + LHiggs, (8)

where Lint describes the particle interactions and LHiggs describes their interactions
with the Higgs boson, generating their mass. Explicitly,

Lint =− 1

2
L̄m /DLm −

1

2
Ēm /DEm −

1

2
Q̄m /DQm −

1

2
Ūm /DUm −

1

2
D̄m /DDm

− 1

4
Gα
µνG

αµν − 1

4
Wα
µνW

αµν − 1

4
BµνB

µν

− g2
3Θ3

64π2
εµνλρG

αµνGαλρ − g2
2Θ2

64π2
εµνλρW

αµνWαλρ − g2
1Θ1

64π2
εµνλρB

µνBλρ, (9)

where Gα
µν , W

α
µν and Bµν are the gauge �eld strengths and Um, Dm and Qm are

the quark �elds6 [11]. In this Lagrangian, only terms that are singlets under the
Standard Model gauge group SU(3)C × SU(2)L × U(1)Y can appear or else the
expression is not gauge invariant; therefore, no mass terms can appear [11]. To
get terms for particle mass, this symmetry must be spontaneously broken, which
we do by introducing the Higgs �eld

φ =

(
φ+

φ0

)
, (10)

which transforms as (1,2,+1/2) [11]. As a result, we get the LHiggs terms:

LHiggs =− (Dµφ)† (Dµφ)− V
(
φ†φ
)

−
(
fmnL̄mPREnφ+ hmnQ̄mPRDnφ+ gmnQ̄mPRUnφ̃

)
(11)

where φ̃ is the complex conjugate of φ [11]. The scalar potential V
(
φ†φ
)
takes the

form
V
(
φ†φ
)

= λ
(
φ†φ
)2 − µ2φ†φ+ µ4/4λ; (12)

λ and µ2 are real and positive [11].

6Similar to Lm, PLQm =

(
PLUm
PLDm

)
.
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2.1.3 Particle Masses

The general Lagrangian in Equation 8 cannot contain mass terms, yet we know
experimentally that many of the Standard Model particles are massive. In order to
see these masses in the Lagrangian, we specify the gauge to be the unitary gauge,
de�ned by

φ =

(
0

1√
2
(v +H(x))

)
, (13)

where H(x) is a real �eld and v is the vacuum expectation value (v.e.v.)7 found
by minimizing the potential in Equation 12: v = µ2/λ.

The vacuum expectation value describes the ground state of the Standard
Model system, and so we perturb the Lagrangian around this state by expand-
ing the Lagrangian in Equation 8 in terms of v. The terms in Lint expand to be
the kinetic terms in the free Lagrangian L0, so we focus our attention on LHiggs,
as expected. Expanding the leptonic term, we get

fmnL̄mPREnφ = fmn

(
ν̄m
Ēm

)>
PREnφ

= fmn
(
ν̄m Ēm

)
PREn

(
0

1√
2
(v +H)

)
=

1√
2
fmn (v +H) ĒmPREn. (14)

The quark terms are expanded in a similar way. As a result, we get the following
relevant terms in LHiggs :

Lv = − v√
2

(
fmnĒmPREn + gmnŪmPRUn + hmnD̄mPRDn + h.c.

)
(15)

where h.c. represents the hermitian conjugate terms [11]. These mass terms are
not necessarily diagonal in the generation indices but we can transform the �elds so
that their mass terms are diagonal, making each particle's mass easy to determine
[11]. The �elds are rede�ned as

PLEm = UmnPLE ′n (16)

PLEm = VmnPLE
′
n (17)

where Umn and Vmn are matrices that �mix� the generations [11]. The new term

7Note that v is not zero so that the SU(3)C × SU(2)L × U(1)Y symmetry is broken.
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for the leptons in the Lagrangian is thus

LHiggs = (U>mnfmnVmn)Ē ′mPRE ′n. (18)

The matrices Umn and Vmn are general, so we can choose them so that Umn = V ∗mn
and specify Umn so that the mass matrix fmn is diagonalized [11]:

U>mnfmnVmn = V >mnfmnVmn = diag(fe, fµ, fτ ) = fm. (19)

Rewriting Equation 15 and omitting the primes, the fermion mass terms in the
Lagrangian are now

Lv = − v√
2

(
fmĒmPREm + gmŪmPRUm + hmD̄mPRDm + h.c.

)
; (20)

note that the quark terms transform in the same way as the leptons.
We can now write the �elds in terms of the QED Dirac spinor �elds, as in

Equation 4. In the Lagrangian, we have the terms

ĒmPREm + h.c. = ĒmPREm + ĒmPLEm
= ĒmPREm + ĒmPLEm
= ēmPREm + ēmPLem

= ēmem (21)

and so the Lagrangian mass terms are �nally in a useful form [11]:

Lv = − v√
2

(
fmēmem + gmūmum + hmd̄mdm

)
. (22)

Therefore, we now have equations for the masses of the leptons (and quarks),

me =
v√
2
fe (23)

mµ =
v√
2
fµ (24)

mτ =
v√
2
fτ , (25)

where each fm is completely independent of the others.
The most relevant result for us is that there is no term for the neutrinos,

meaning that, in the Standard Model, neutrinos are massless. This result could
have been anticipated in Equation 14, where the 0 term in the unitary gauge
negated the ν term, thus preventing the neutrino sector from interacting with the
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Higgs �eld and gaining a mass.

2.1.4 Interactions

We will brie�y examine the interactions between the fermions and other particles
to complete our discussion of the Standard Model.

The fermion's coupling to the Higgs boson is the simplest to analyze since we
already accomplished much of the work in the previous section. Recall that we
began with Equation 14 and had two important terms:

v√
2
fmnĒmPREn (26)

and
H√

2
fmnĒmPREn. (27)

The vacuum expectation value v term (Equation 26) determined the mass terms for
the fermions, and the Higgs �eld H term (Equation 27) determines the interaction
between the fermions and the Higgs boson. Following the same procedure as in
the previous section, we transform the �elds so that the interaction terms have the
following form:

LHf = − H√
2

(
fmēmem + gmūmum + hmd̄mdm

)
= −

∑ mf

v
f̄fH, (28)

where we are summing over all fermions f (of course, mν is zero). The vacuum
expectation value is v = 246 GeV and so m� v for the fermions [11]. Therefore,
fermions couple weakly to the Higgs boson: the heavier the fermion is, the more
strongly they couple.

Since leptons by de�nition do not interact in the strong force, the only other
interactions to describe are electroweak. Electroweak interactions come in two
varieties: charged-current and neutral-current. Charged-current interactions arise
from couplings withWα

µ and neutral-current interactions arise from couplings with
Bµ, as in these kinetic terms in the Lagrangian in Equation 8:

LEW = −1

2
L̄m /DLm −

1

2
Ēm /DEm −

1

2
Q̄m /DQm −

1

2
Ūm /DUm −

1

2
D̄m /DDm. (29)

We expand the leptonic part of this equation in terms of the mass eigenstates and
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W−

`−

ν`

(a) A charged-current interaction.

Z0

ν`

ν`

(b) A neutral-current interaction.

Figure 1: The two basic vertices of weak interactions.

the covariant derivative:

LEW = +
i

4

(
ν̄m
Ēm

)>
γµPL

(
−g1Bµ + g2W

3
µ g2(W 1

µ − iW 2µ)
g2(W 1

µ + iW 2µ) −g1Bµ − g2W
3
µ

)(
νm
Em

)
− i

2
g1BµĒmγ

µPREm + h.c.; (30)

the �rst line is the charged-current interactions and the second line is the neutral-
current interactions as pictured in Figures 1a and 1b [11].

The charged-current interaction terms involve a projection operator, so we can
rewrite them in terms of the Dirac spinor em:

Lcc =
ig2√

2

(
W+
µ (ν̄mγ

µPLem) +W−
µ (ēmγ

µPLνm)
)
, (31)

where W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) [11]. We want to transform the Dirac �elds into

the mass basis as in Equation 17. Though neutrinos are massless, we can still
transform them as

νm = U e
mnν

′
m. (32)

We transform the quark sector in the same way and de�ne Vmn = (Uu†Ud)mn; with
these de�nitions, the charged-current terms are [11]

Lcc =
ig2

2
√

2

[
W+
µ (ν̄ ′mγ

µ(1 + γ5)e′m) +W−
µ (ē′mγ

µ(1 + γ5)ν ′m)

+Vmn(ū′mγ
µ(1 + γ5)d′m) + V †mn(d̄′mγ

µ(1 + γ5)u′m)
]
. (33)

The 3× 3 unitary matrix Vmn is the Cabbibo-Koyabashi-Maskawa (CKM) matrix
and enables charged-current interactions to happen between quark generations [11].
This matrix is nearly, but not exactly, a unit matrix so these cross-generational
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interactions are rare. Because neutrinos are massless there is no equivalent matrix
for the lepton sector in the Standard Model.

The neutral-current interactions act in the same way for all fermions. The elec-
troweak gauge group has two bosons, Aµ and Zµ, that are related to the generators
in this way: (

W 3
µ

Bµ

)
=

(
cos θw sin θw
− sin θw cos θw

)(
Zµ
Aµ

)
(34)

where θw is the weak mixing angle [11]. After some rearranging, we get two terms
de�ning the fermion coupling to the photon Aµ and the Z-boson Zµ. The photon
or electromagnetic coupling is

Lem =
∑
f

ieAµf̄γ
µQf (35)

and the Z-boson or neutral-current coupling is

Lnc =
ie

sin θw cos θw

∑
f

Zµf̄γ
µ(gV + γ5gA)f, (36)

where gV and gA are constants given by various generators [11]. We note that
since neutrinos have electric charge Q = 0, they only participate in neutral-current
interactions.

2.2 Neutrino Oscillations

2.2.1 Motivation

The Standard Model has been remarkably successful experimentally, but the dis-
covery of neutrino oscillations has presented a major challenge.8 The �rst hints
of an issue came with the solar neutrino problem: in 1939 Hans Bethe discovered
the reaction that occurs in the interior of the Sun, the pp chain [16]. This process
went through several theoretical iterations, but the one that occurs in most of the
Sun's reactions, and, more importantly to us, produces neutrinos is as follows [29]:

The pp chain. To begin, two protons, or hydrogen nuclei, combine to form a
deuteron:

p+ p→ d+ e+ + νe

p+ p+ e− → d+ νe.

8Section 2.2 is taken, in large parts, from Ref. [31].
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This deuteron then combines with another proton:

d+ p→ 3He + γ.

Helium-3 creates alpha particles or beryllium-7:

3He + p→ α + e+ + νe
3He + 3He→ α + p+ p

3He + α→ 7Be + γ.

This beryllium-7 converts into alpha particles in two ways, either:

7Be + e− → 7Li + νe
7Li + p→ α + α

or:

7Be + p→ 8B + γ
8B→ 7Be + e+ + νe

7Be→ α + α.

Note that electron-neutrinos are produced in several of these steps.

Because neutrinos interact so weakly with other particles these solar neutri-
nos o�er a probe into the Sun's interior, a fact that inspired Ray Davis to look
speci�cally for them in 1966 [16]. However, his experiments only detected a rate of
2.2± 0.2 SNU, a rate about one third of the expected 8 SNU9 [5]. Pontecorvo and
Gribov proposed a theoretical solution: more than one type of neutrino existed
(at this point, only the electron-neutrino was known) and they could transform
into one another in a process called oscillation [16]. This prediction was eventually
validated at the Sudbury Neutrino Observatory, which detected all three types of
neutrinos and observed in 2003 that the sum of all three �avours corresponded to
the original predicted solar neutrino rate [16]. As only electron-neutrinos are pro-
duced in the pp chain, this result gave strong evidence for the existence of neutrino
oscillations.

9SNU stands for �solar neutrino unit� and is equal to 10−36 interactions per second; for 1
SNU, one detection would occur about every six days [5].
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2.2.2 Two-Flavor Model

Though there are three generations of neutrinos, a simpli�ed two-�avor model
gives us the important features and results of oscillation. In this model, we con-
sider only νe and νµ. These are the weak eigenstates να that we detect in weak
interactions; however, we must also consider the mass/energy eigenstates νi that
are the eigenstates of free Hamiltonian of the system.

The inequivalence of the weak and mass eigenstates allow neutrino oscillations
to occur. The weak eigenstates are a linear combination of the mass eigenstates
and are related by a mixing matrix:(

ν1

ν2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
νµ
νe

)
. (37)

The angle θ is called the mixing angle and measures the amount of mixing that oc-
curs between the mass eigenstates. This amount changes in time so that at certain
moments the system is most similar to νe and at other moments is most similar to
νµ. Thus, the probability of observing a given state at any point in time changes,
and since the behaviour is regulated by the periodic functions sine and cosine we
say that it oscillates. In the simpli�ed two-�avor system, the mixing matrix is the
usual rotation matrix and so has only one mixing angle, but in the three-�avor
system the mixing matrix will be 3× 3 and contain three di�erent mixing angles�
θ12, θ13 and θ23� controlling the mixing between each pair of neutrino generations.

To specify exactly how the mass eigenstates change in time, we must look at the
time-dependent Schrödinger equation for the system. We will de�ne an operator
that changes the initial state as a function of time [10]:

|ψ(t)〉 = Û(t)|ψ(0)〉. (38)

To solve for Û(t), we �nd the Schrödinger equation for it, which is

d

dt
Û(t) = − i

~
ĤÛ(t), (39)

and solving this equation for Û(t) (assuming that Ĥ is time-independent and U is
unitary) yields

Û(t) = e−iĤt/~. (40)

Therefore, we can rewrite our Equation 38 as

|ψ(t)〉 = e−iĤt/~|ψ(0)〉. (41)

The original states νi are eigenstates of Ĥ so we can replace Ĥ with Ei. These Es
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are the allowed energies of the system and thus are the eigenvalues associated with
the eigenstates [10]. As a result, we can write the time-dependent mass eigenstates
as

ν1(t) = ν1(0)e−iE1t/~ (42)

ν2(t) = ν2(0)e−iE2t/~. (43)

With these expressions, we can now rewrite Equation 37 in the time-dependent
form: (

ν1(0)e−iE1t/~

ν2(0)e−iE2t/~

)
=

(
cos θ − sin θ
sin θ cos θ

)(
νµ(t)
νe(t)

)
. (44)

We are most interested in the weak eigenstates as they are the ones observed in
weak scattering events. In order to solve for the weak eigenstates in terms of
the mass eigenstates, we must �nd the inverse of the rotation matrix in Equation
44, which fortunately is simply a matter of moving the negative sign. The time-
dependent equations for the weak eigenstates is thus(

νµ(t)
νe(t)

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ν1(0)e−iE1t/~

ν2(0)e−iE2t/~

)
. (45)

Once we have this equation, we must determine the values of ν1(0) and ν2(0).
These states depend on what type of neutrino existed at t=0; that is, which �avor
of neutrino was produced in the original weak interaction. Say an electron-neutrino
was produced (as occurs in the Sun): at t=0, then, νe=1 and νµ=0. Putting these
values into Equation 44, we determine that ν1(0)=− sin θ and ν2(0)=cos θ. We
then put these values into Equation 45 in order to �nd the full time-dependent
equations for the weak eigenstates:

νµ(t) = sin θ cos θ(e−iE2t/~ − e−iE1t/~) (46)

νe(t) = sin2 θe−iE2t/~ + cos2 θe−iE1t/~. (47)

Now, to �nd the probability that the original electron-neutrino has transformed
into a muon-neutrino, we calculate |νµ|2. After some algebra, we �nd that

Pνe→νµ = sin2 2θ sin2

(
E2 − E1

2~
t

)
. (48)

To �nd the probability that it has remained νe, we simply subtract the probability
in Equation 48 from 1; this value is called the survival probability. Using the
equation E2 = |~p|2c2 + (mc2)2 in the highly relativistic limit and �nding m, the
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mass associated with the mass eigenstates, we can rewrite Equation 48 as

Pνe→νµ = sin2 2θ sin2

(
m2

2 −m2
1

4~E
c4t

)
, (49)

where E is the energy of the emitted neutrino [29]. Assuming that neutrinos travel
at approximately the speed of light and writing the di�erence of the masses squared
as ∆m2, the oscillation probability in vacuum is

Pνe→νµ = sin2 2θ sin2

(
∆m2c3

4~E
L

)
, (50)

where L is the distance the neutrino has travelled [29].
From this admittedly simpli�ed equation, we can still see the basic form and

consequences of neutrino oscillation. First, the probability that an electron-neutrino
will transform into a muon-neutrino is periodic, related to both the mixing angle
and the di�erence in masses associated with the mass eigenstates. This periodicity
implies that, once transformed, the muon-neutrino will eventually change back into
its original state, hence the name �neutrino oscillations.� In addition, the fact that
oscillations depend on the mass di�erence indicates that these masses must be dif-
ferent: neutrinos must be massive and have nonequal masses. Lastly, we note that
lepton �avor number, as in Table 2, is no longer conserved in weak interactions,
as any of the three neutrinos may be detected in any given interaction.

2.2.3 Three-Flavor Model

With the addition of the third �avor ντ to our model, the mathematics become less
transparent. The weak states are still linear combinations of the mass eignestates,
but we represent this more generally:

|να〉 =
n∑
i=1

U∗αi|νi〉 (51)

where n is the number of neutrino generations (which is assumed, from experi-
mental evidence, to be three) and U is the mixing matrix [28]. The mixing matrix
U is unitary and has several possible parameterizations, such as the Pontecorvo-
Maki-Nakagawa-Sakata (PMNS) or the Maki-Nakagawa-Sakata (MNS) mixing ma-
trix [44]. The MNS matrix takes the form

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

−iδ s23c13

s12s23 − c12c23s13e
−iδ −c12s23 − s12c23c13e

−iδ c23c13

 (52)
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where cij = cos θij and sij = sin θij [29]. Instead of one mixing angle as in the two-
�avor case, we have three mixing angles and a phase. These phases di�erentiate
the MNS matrix from the CKM matrix for quarks: in the CKM matrix any phases
can be rotated away since the Standard Model Lagrangian conserves �avor and
is thus una�ected by this transformation [11]. In the MNS matrix, though, we
cannot perform the same trick because lepton number is clearly not conserved in
neutrino oscillations.

After a time t, να evolves, predictably, as

|να(t)〉 =
n∑
i=1

U∗αi|νi(t)〉. (53)

The probability of detecting the state |νβ〉 can be written as

Pαβ = |〈νβ|να(t)〉| =
∣∣∣ n∑
i=1

n∑
j=1

U∗αiUβj〈νβ|να(t)〉
∣∣∣2 (54)

or, if we look at only the amplitude [44],

Aαβ =
n∑
i=1

UβiDiU
†
iα. (55)

In this case, Di is a function of momentum, the distance traveled and time, and so
describes the propagation of νi over the distance L [44]. Using relativistic quantum
mechanics (and setting ~ = c = 1), we �nd that

Di = e−i(EiT−piL) (56)

where T is the propagation time and L is the distance travelled by the neutrino [44].
In order to calculate the transition probability Pαβ, we square Equation 55.

From the factor DiD
∗
j we get the phase [44]

δφij = (Ei − Ej)T − (pi − pj)L

= (Ei − Ej)
(
T − Ei + Ej

pi + pj
L

)
+
m2
i −m2

j

pi + pj
L. (57)

This equation can be simpli�ed by approximating L=T , which can be justi�ed in
three distinct ways. First, T and L can be related by T=(Ei + Ej)L/pi + pj=Lv̄,
where v̄ is the average velocity of νi and νj. In addition, the same result occurs
if we assume that Ei=Ej=E0. Finally, we can say that pi=pj=p and L=T up to
terms m2

ij/p
2 for relativistic neutrinos; alternately, if Ei 6= Ej and pi 6= pj and
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L=T up to terms of order m2
i,j/E

2
i,j for relativistic neutrinos, we reach the same

conclusion [44]. For all three of these situations, we conclude that Equation 57
simpli�es to

δφij '
m2
i −m2

j

2p
L = 2π

L

Lνij
sgn(m2

i −m2
j) (58)

where p is the average of pi and pj and Lνij is the neutrino oscillation length
associated with the mass di�erence between νi and νj [44]:

Lνij =
4πL

∆m2
ij

.

This value is useful in setting up neutrino oscillation experiments, as the distance
L between the source and the detector must be of the same order or greater than
Lνij in order for the oscillations to be detected.

With Equations 55, 57 and 58, we �nd the transition probability to be

Pαβ =
∑
i

|Uβi|2|Uαi|2 + 2
∑
i>j

|UβiU∗αiUαjU∗βj| cos

(
∆m2

ij

2p
L+ φαβ;ij

)
(59)

where φαβ;ij=arg(UβiU
∗
αiUαjU

∗
βj) [44].

Though this probability is more complex than Equation 50, the same ∆m2
ij

term appears in both equations and so indicates that all three neutrinos have
unique, non-zero masses. The mass di�erence has been measured to be on the
order of ∆mij ≤ 5 × 10−3 eV2, and so require a large L and small E to probe
closely [11]. We can determine the mass di�erences in this way, but the actual
masses of the neutrinos remain unspeci�ed.

3 Beyond the Standard Model

Since the current Standard Model theory predicts massless neutrinos while the
observation of neutrino oscillations indicates that neutrinos do have mass, we must
clearly must look beyond the Standard Model to �nd an explanation for this fact.
This section will explore some mechanisms for neutrino mass and describe the
basic supersymmetric theory before we consider R-parity in more depth.
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3.1 The Seesaw Mechanism

3.1.1 Majorana Neutrinos

One of the simplest methods for modifying the Standard Model is the addition of
new particles, so we introduce sterile neutrinos to the theory. These neutrinos are
�sterile� as they do not interact with any of the existing Standard Model particles,
but they do have mass. As their presence does not a�ect current observables,
we are free to add as many sterile neutrinos as required [28]. Since they are non-
interacting, the only terms sterile neutrinos add to the Standard Model Lagrangian
are mass terms. These terms come in two varieties: Dirac and Majorana10 [38].
The Dirac mass term for neutrinos has the form

−mD (ν̄LνR + ν̄RνL) (60)

and the Majorana mass term has the form

−1

2
mL
M (ν̄Lν

c
L + ν̄cLνL)− 1

2
mR
M (ν̄Rν

c
R + ν̄cRνR) , (61)

where L and R denote left- and right-handed neutrinos and c denotes a charge
conjugated neutrino [38]. The m× 3 matrix mD, where m is the number of sterile
neutrinos, is generated from the Higgs spontaneous symmetry breaking and so has
a form analagous to those in Equation 22:

mD =
v√
2
jν (62)

where v is the Higgs vacuum expectation value and jν is the mass matrix [28].
The m × m matrix mM is symmetric and only permitted in the theory if the
neutrinos are sterile: the neutrinos cannot have an electric, �avor or color charge,
thus preventing them from interacting via Standard Model forces [28].

The Dirac and Majorana mass terms in Equations 60 and 61 can be combined
into a single term [28]:

−Lmass =
1

2
~̄νcMν~ν + h.c.. (63)

10These names do not refer to the spinor representation of the �elds in these terms nor the
type of particle described.
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The vectors take the forms [38]

~̄νc = (ν̄L ν̄
c
R) (64)

~ν =

(
νcL
νR

)
. (65)

The (3 +m)× (3 +m) symmetric matrix Mν takes the form

Mν =

(
0 mD

mD mN

)
(66)

where the �rst term is zero because we are only considering left-handed neutrinos
[38]. Using the unitary matrix V ν we can diagonalize Mν and so easily �nd the
3 + m mass eigenstates ~νmass = (V ν)†~ν [28]. Using these values, the Lagrangian
can be rewritten as

−Lmass =
1

2

3+m∑
k=1

mkν̄kMνkM (67)

where k counts the neutrinos and M indicates that we are now considering the
neutrinos in the mass, not weak, basis [28]. The neutrino terms are the sum of
two mass terms:

νMk = νk,mass + νck,mass; (68)

importantly, we see that νM = νcM [28]. This result is the Majorana condition.
The mass states of neutrinos and antineutrinos are equivalent and so both can be
described by a single �eld; that is, neutrinos in this model are Majorana particles.

The fact that neutrinos are Majorana particles has several important impli-
cations, the �rst being the violation of total lepton number [55]. Recall that in
the Standard Model, neutrinos and charged leptons have a lepton number of +1;
likewise, antineutrinos and antileptons have a lepton number of −1. However, if
ν = νc, then because charge conjugation reverses lepton number we cannot con-
sistently assign a lepton number to the neutrino; i.e, a Majorana neutrino's lepton
number must be 0. Even with this change, though, lepton number cannot be con-
served: in the interaction u + d̄ → e+ + νeM , for example, the lepton number of
the left-hand side is 0 while on the right-hand side it is −1.

Majorana neutrinos have a clear experimental indicator: neutrinoless double
beta decay [29]. In this interaction, a nucleus emits an electron and neutrino but
this neutrino is absorbed as an antineutrino into a second nucleus, which then
emits an electron, as pictured in Figure 2 [55]. The observation of this decay
would support the existence of Majorana neutrinos, but could also be indicative of
a variety of theories such as left-right symmetric GUTs or, more interestingly for
us, R-parity violating supersymmetry [24, 34]. In any case, its observation would
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Figure 2: Double beta decay, where νeM is a Majorana electron-neutrino.

give solid evidence for physics beyond the Standard Model.

3.1.2 The Seesaw Mechanism and Neutrinos

Now that we have a theory for the Majorana nature of neutrinos, we address the
question of neutrino mass.11 The key questions are: why do they have mass and
why is this mass so much less than that of the other Standard Model particles [38]?
We will assume that mN � mD, which means that the masses generated by the
Majorana term of the Lagrangian are much greater than the Dirac term masses.
As a result of this choice, the matrix Mν in Equation 66 has the form

Mν =

(
0 ' 0
' 0 mN

)
. (69)

Diagonalizing this matrix results in three light neutrinos νl, andm heavy neutrinos
N so that the Lagrangian is [28]:

−LMν =
1

2
(ν̄lMlightνl + N̄MheavyN). (70)

These light and heavy masses are related to the Majorana and Dirac masses as

Mlight = −mDm
−1
N m>D (71)

and
Mheavy = mN . (72)

Equation 71 is known as the Type I seesaw formula [8]. As the name suggests,
several types of seesaw mechanisms exist: the Type II seesaw mechanism adds a
Higgs triplet that couples to both Majorana and Dirac neutrinos as well as the
conventional Higgs, while the Type III seesaw works in many uni�ed theories and

11This section is primarily from Ref. [31].
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may more accurately explain neutrino mixing and leptogenesis [8]. In general,
the seesaw mechanism can be implemented in one of these three versions, with
di�erent gauge groups and multiplets, broken explictly or spontaneously, at a high
or low energy scale, and with or without supersymmetry [56]. Within this great
variety, the basics remain the same: the seesaw mechanism is so named because
the light and heavy masses are inversely proportional, so that as the heavy mass
becomes heavier, the lighter mass becomes lighter. Both of these light and heavy
neutrinos are Majorana particles [28].

If we rewrite Equation 66, while no longer ignoring right-handed neutrinos, as

Mν =

(
mR
N m>D

mD mL
N

)
(73)

and solve it for its eigenvalues and eigenstates, we will �nd that the heavy neu-
trinos are right-handed and the light neutrinos are left-handed [28, 38]. The two
eigenvalues can be easily found [38]:

λ1,2 =
1

2

(
(mR

N +mL
N)±

√
(mR

N +mL
N)2 − 4(mR

Nm
L
N −m2

D)

)
. (74)

Now, we can rewrite Equation 73 in the mass (instead of weak) basis, where only
the Majorana mass term MN couples to the Higgs:

Mm =

(
mν 0
0 M

)
. (75)

The eigenstates, ν and N , are the mass eigenstates for the neutrinos [38]. We will
assume that the Higgs �eld couples very weakly to the ν-�eld so that mν ' 0 [38].
This clearly means that mν is the light mass and that λ1 in the weak basis must
also be negligible:

λ1 = 0 =
1

2

(
(mR

N +mL
N)±

√
(mR

N +mL
N)2 − 4(mR

Nm
L
N −m2

D)

)
0 = (mR

N +mL
N)±

√
(mR

N +mL
N)2 − 4(mR

Nm
L
N −m2

D)

(mR
N +mL

N)2 = (mR
N +mL

N)2 − 4(mR
Nm

L
N −m2

D)

0 = −4(mR
Nm

L
N −m2

D) (76)

resulting in
mR
Nm

L
N = m2

D. (77)

This equation also reveals the nature of the seesaw mechanism: for a �xedMD, the
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Majorana masses must be inversely proportional, which is exactly what we found
in Equation 71 [38]. Note also that we chose the negative sign for λ1; therefore,
λ2 = M must use the positive sign and with a bit more algebra, we �nd that

λ2 = M = mR
N +mL

N . (78)

With these eigenvalues we �nd the eigenvectors, in terms of the right- and left-
handed �elds, to be [38]

N = (νR + νcR) +
mD

mR
N

(νL + νcL) (79)

ν = (νL + νcL)− mD

mR
N

(νR + νcR) (80)

Referencing our original assumption thatmN � mD, we can see that N , the heavy
neutrino, is essentially composed of only νR, while our light neutrino ν is almost
only νL [38]. Similarily, we can say that right-handed neutrinos are composed of
N and left-handed neutrinos are composed of ν [38]. This conclusion re�ects what
we observe: the neutrinos we detect are all left-handed and light, and we have not
seen any heavier neutrinos because they are right-handed and do not interact via
any of the Standard Model forces. The seesaw mechanism, then, can e�ectively
explain why we observe such small neutrino masses.

3.2 Motivation for Supersymmetry

In addition to neutrino mass, additional clues indicate that we must look beyond
the Standard Model for a more accurate description of Nature. Notably, the
Standard Model does not describe gravity, whose quantum e�ects begin to be
important at the reduced Planck scale MP = 1/

√
8πG = 2.4 × 1018 GeV [42].

Contrasted with the electroweak scale atMW ∼ 0.1 to 1 TeV, we �nd the so-called
hierarchy problem: why is gravity at a scale ten million billion times greater than
the rest of the Standard Model [25]? This problem is not only inconvenient from
an aesthetic perspective but also causes issues with the Higgs boson. We know
from recent results that the Higgs boson has a mass of 125 GeV, but according
to quantum �eld theory must receive quantum corrections from virtual e�ects of
the particles that couple with it [42]. For example, the Higgs boson couples to the
fermion as in Equation 28, so the schematic Feynman diagram in Figure 3a gives
a correction to the original mH :

∆m2
H = −|λf |

2

8π2
Λ2
UV + . . . , (81)
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Figure 3: One-loop contributions to the Higgs mass parameter [42].

where λf is the coe�cient in the Higgs-fermion interaction term [42]. The ultra-
violet momentum cuto� term ΛUV regulates the loop integral and is the limit at
which new, high-energy physics must enter the theory. However, when ΛUV is close
to the reduced Planck scale MP , as we may expect, the correction becomes about
30 times greater than the value of mH [42]. In e�ect, if the fermion is virtual it
may take any mass up to this Planck scale mass, resulting in a Higgs boson with
a mass near the Planck scale [53]. Of course, we have observed the Higgs boson's
mass to be much nearer the electroweak scale than the Planck scale, so we must
�nd an explanation for this fact.

The same problem arises even if we consider the particle in the loop correction
to be a heavy scalar instead of a Dirac fermion. The Feynman diagram for this
interaction is in Figure 3b and gives a correction to m2

H :

∆m2
H =

λs
16π2

(
Λ2
UV + 2m2

s ln(ΛUV /ms) + . . .
)
, (82)

where ms is the mass of the scalar [42]. We can use dimensional regularization to
eliminate the Λ2

UV piece, but even then the correction will be sensitive to the mass
of the scalar [42]. Since the scalar mass can be arbitrarily large, mH can easily be
higher than the electroweak scale.

How can we then explain the unavoidable fact that mH is observed near the
electroweak, not Planck, scale? The relative minus sign between Equations 81 and
82 suggests a symmetry between the Dirac and scalar particles: if each fermion
is paired with two complex scalars where λs = |λf |2, then the Λ2

UV terms can-
cel [42]. This convenient cancellation persists to all loop orders once we assume
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supersymmetry, which can be simply de�ned as:

Q|boson〉 = |fermion〉 (83)

Q|fermion〉 = |boson〉, (84)

where the operator Q, along with Q†, is fermionic.
Though the intitial de�nition of supersymmetry is quite general, we can exactly

specify the algebra. Haag, Sohnius and Lopuszanski proved that the following
supersymmetry algebra is the only symmetry of the S-matrix that is consistent
with relativistic quantum �eld theory:

{QA
α , Q̄β̇B} = 2σm

αβ̇
Pmδ

A
B

{QA
α , Q

B
β } = {Q̄α̇A, Q̄β̇B} = 0

[Pm, Q
A
α ] = [Pm, Q̄α̇A] = 0

[Pm, Pn] = 0, (85)

where the Greek indices denote Weyl spinors and the Latin indices denote Lorentz
four-vectors [57]. The capital indices denote the dimension of the supersymmetry;
we shall be considering N = 1 unless otherwise noted.

One of the �rst conclusions in supersymmetry is that every representation
of the algebra has an equal number of bosonic and fermionic states [57]. As a
result, each particle in the Standard Model has a supersymmetric partner; this
partner is bosonic for Standard Model fermions and fermionic for Standard Model
bosons. These supersymmetric particles, if they are truly symmetric, should have
the same mass as their Standard Model partner, but we have not yet observed
any such particles at the appropriate mass scale. Therefore, supersymmetry is a
broken symmetry, but we must be careful. Since unbroken supersymmetry solves
the hierarchy problem so neatly, we must preserve the condition that λs = |λf |2.
For breaking the symmetry, then, we consider soft supersymmetry breaking [42].
�Soft� terms have positive mass dimension so that no divergences occur, and can
arise from various sources, including supergravity [1]. The Lagrangian becomes

L = LSUSY + Lsoft, (86)

where LSUSY is the unbroken supersymmetry Lagrangian that we will discuss in the
next section and Lsoft violates supersymmetry [42]. As a result, the contribution
to the Higgs mass squared term is

∆m2
H = m2

soft

(
λ

16π2
ln(ΛUV /msoft) + ...

)
, (87)
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where msoft term determines the di�erence in mass between particles and their su-
persymmetric partners [42]. Because we want a small contribution to mH we also
require msoft to be relatively small as well; the lightest supersymmetric particles
are estimated to be on the TeV scale [42]. This scale is larger than the Stan-
dard Model particles, so the seesaw mechanism �ts naturally into supersymmetry.
Therefore, supersymmetry can easily incorporate the theories previously discussed
involving massive and sterile neutrinos.

3.3 The Minimal Supersymmetric Standard Model

3.3.1 Particle Content

Before we discuss more complex supersymmetric models, we will review the Mini-
mal Supersymmetric Standard Model (MSSM), which contributes the LSUSY term
in Equation 86 and forms the basis of the theories we will examine later.

First we will discuss the particle content of the MSSM: supersymmetry requires
a bosonic partner for each Standard Model fermion and vice versa, so we need
to de�ne these new particles, called sparticles. Could these sparticles be a part
of the Standard Model already? Note that supersymmetry does not a�ect the
SU(3)C , SU(2)L or U(1)Y degrees of freedom, so spin-half singlets have spin-0
singlet partners, etc. [1]. Take the lepton SU(2)L doublet�

Lm(x) =

(
νm
eLm

)
, (88)

where eLm = Em is the left-handed electron �eld, as an example. There is a poten-
tial partner doublet: the spin-0 SU(2)L Higgs doublet in Equation 10. However,
the Higgs doublet does not carry lepton number, which is conserved, and so we
need a new doublet that does satisfy this requirement:

L̃m(x) =

(
ν̃m
ẽLm

)
, (89)

where ν̃ is the neutrino scalar partner and ẽL is the electron scalar partner [1].
The right-handed lepton �eld eRm is in an SU(2)L singlet, so its supersymmetric
partner ẽR is also a singlet. Likewise, quarks are triplets of SU(3)C and so we
need a new scalar triplet. Since we have not been able to pair any of the fermions
with Standard Model spin-one bosons, we also need new fermionic partners for
the Standard Model bosons. However, while in the Standard Model the Higgs
doublet simply has a charge conjugate, in the supersymmetric version we require
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Particle spin-0 spin-1/2 Gauge Transformation

Q
(
ũL d̃L

)
(uL dL)

(
3,2,+1

6

)
u ũR uR

(
3,1,+2

3

)
d d̃R dR

(
3,1,−1

3

)
L (ν̃ ẽL) (ν eL)

(
1,2,−1

2

)
e ẽR eR (1,1,−1)

Hu (H+
u H0

u)
(
H̃+
u H̃0

u

) (
1,2,+1

2

)
Hd

(
H0
d H

−
d

) (
H̃0
d H̃

−
d

) (
1,2,−1

2

)
Table 4: Chiral supermultiplets of the MSSM.

two separate doublets:(
H+
u

H0
u

)
has the supersymmetric partner

(
H̃+
u

H̃0
u

)
(
H0
d

H−d

)
has the supersymmetric partner

(
H̃0
d

H̃−d

)
for the two Higgs doublets Hu and Hd [1]. A summary of the particles in the
MSSM (excluding the gauge supermultiplets) is found in Table 4.

3.3.2 The MSSM Lagrangian

With the particle content of the MSSM established, we now construct the La-
grangian for this theory.12 We start with the Wess-Zumino model, which describes
the kinetics of a massless complex scalar φ and a massless complex spinor ψ [42]:

Lfree = −∂µφ†∂µφ+ iψ†σ̄µ∂µψ. (90)

These terms by themselves are not surprising, but φ has 2 degrees of freedom as it
is one complex �eld while ψ has four as the spinor has two complex components [1].
In order to have the same number of degrees of freedom for both the scalars and
fermions, we add an additional, non-interacting scalar �eld F :

Lfree = −∂µφ†∂µφ+ iψ†σ̄µ∂µψ + F †F. (91)

12We will be ignoring any D > 4 operators [4].
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To add interactions, we introduce terms involving functions of the bosonic �elds [1]:

Lint = W iFi −
1

2

(
W ijψiψj

)
+ h.c.. (92)

The function W is the superpotential

W =
1

2
M ijφiφj +

1

6
Y ijkφiφjφk (93)

while W i and W ij are the �rst and second derivatives of W with respect to φ [1].
The symmetric in i, j M ij is a mass matrix for the fermions and the symmetric
in i, j, k Y ijk is the Yukawa coupling between two fermions and a boson [42]. By
eliminating the auxiliary scalar �elds using their equations of motion, we �nd that
Fi = −W †

i and F †i = −W i [42]. Therefore, we have the complete Lagrangian for
the chiral part of the theory:

Lchiral = −∂µφ†∂µφ+ iψ†σ̄µ∂µψ −
1

2

(
W ijψiψj + h.c.

)
. (94)

Now we consider the gauge portion of the Lagrangian. As with the chiral
supermultiplets, we must add an auxiliary �eld D. The Lagrangian is

Lgauge = −1

4
FµνF

µν + iλ†σ̄µ∂µλ+
1

2
D2 (95)

where the �rst two terms are the usual Maxwell term for the photon and a massless
spinor term for the photino [1].

To combine these chiral and gauge supermultiplet terms into a single La-
grangian, we simply add Equations 91 and 95, but replace the derivatives in the
chiral Lagrangian with the covariant derivative Dµ = ∂µ + iqAµ to make it gauge-
invariant, where q is the U(1) charge [1]. As a result, we get the Lagrangian

Labelian = −Dµφ
†Dµφ+ iψ†σ̄µ∂µψ + F †F − 1

4
FµνF

µν + iλ†σ̄µ∂µλ+
1

2
D2. (96)

We do not use the purely chiral interaction terms that we found in Equation 92,
but instead add interaction terms involving both gauge and chiral �elds, which
take the form

Lint = −
√

2q
[
(φ†ψ)λ+ λ†(ψ†φ)

]
− q(φ†φ)D; (97)

the �rst two terms can be considered the supersymmetri�cation of the usual
gauge/matter �eld coupling [1]. Using the same method as before, we eliminate
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the auxiliary �eld D so that the Lagrangian for the abelian case becomes

Labelian =−Dµφ
†Dµφ+ iψ†σ̄µ∂µψ + F †F − 1

4
FµνF

µν + iλ†σ̄µ∂µλ

−
√

2q
(
φ†ψλ+ λ†ψ†φ

)
− 1

2
q2
(
φ†φ
)2
. (98)

For the non-abelian case, we must modify the gauge and interaction terms in
the Lagrangian. The gauge terms become

Lgauge = −1

4
F a
µνF

aµν + iλ†aσ̄µ∇µλ
a +

1

2
DaDa (99)

where the �rst term now contains the Yang-Mills �eld strength and ∇µλ
a is the

covariant derivative for the photino [42]. The index a runs over the corresponding
gauge group as in Table 1 and g is the appropriate gauge coupling constant. The
interaction terms then become

Lint = −
√

2g
[
(φ†T aψ)λa + λ†a(ψ†T aφ)

]
− g(φ†T aφ)Da (100)

where T a is the generators for the gauge group [42]. We can use the same methods
as before to eliminate the auxiliary �elds, so the �nal Lagrangian is

LSUSY =−Dµφ
†Dµφ+ iψ†σ̄µ∂µψ −

1

4
F a
µνF

aµν + iλ†aσ̄µ∇µλ
a

−
√

2g
[
(φ†T aψ)λa + λ†a(ψ†T aφ)

]
− |Wi|2 −

1

2
g2
(
φ†T aφ

)2
. (101)

The �rst line de�nes the kinetics of the �elds, the second line de�nes the interac-
tions, and the last line of this equation is the scalar potential.13

To fully specify the MSSM, we must de�ne the superpotentialW of the theory:

W = Y ij
u ūiQjHu − Y ij

d d̄iQjHd − Y ij
e ēiLjHd + µHuHd (102)

where the 3 × 3 matrices Y ij are the same Yukawa couplings as in the Standard
Model [1]. Unlike the Standard Model, of course, these couplings also describe
the interactions between the new supersymmetric particles as well. Therefore, µ
is the only new parameter added by supersymmetry. Expanding out the last term

13Note that we have been using the component �elds, not super�elds, for clarity and because
it is easier to compare to the Standard Model terms [42].
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in Equation 102, we get a term for the Higgsino mass,

µ
(
H̄+
u H̄

−
d − H̄

0
uH̄

0
d

)
+ c.c., (103)

and a supersymmetric Higgs mass-squared term,

|µ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−d |
2
)

; (104)

this term appears in the scalar potential [42].

3.3.3 Problems with the MSSM

The MSSM has several problems. As with all theories, we want to avoid �ne-
tuning: large cancellations that are not the consequence of some correlation or
symmetry in the UV theory [51]. However, in the MSSM the new parameter
µ, which conserves supersymmetry, is correlated with the soft supersymmetry-
breaking parameter; why is this the case [51]? In addition, µ must be on the order
of 102 or 103 GeV, which is much lower than expected, so that the Higgs has the
correct mass [42]. These issues are known as the µ problem. One possible solution
is to replace the µ term by a Yukawa coupling involving Hu, Hd and a new scalar
�eld with an appropriately-scaled vacuum expectation value [22]. This theory is
known as the next-to-minimal supersymmetric standard model (NMSSM), and it
comes in both R-parity conserving and violating varieties [14]. However, we will
continue to consider the MSSM as R-parity violation may o�er a solution to the
µ problem.

In addition, supersymmetry must be a broken theory, but the Lagrangian in
Equation 101 contains no supersymmetry-breaking terms. For the reasons we
discussed in Section 3.2, we add Lsoft terms. Some viable soft supersymmetry
breaking terms are

Lsoft = −
(

1

2
Maλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj

)
+ c.c.−

(
m2
)i
j
φ∗jφi, (105)

where c.c. represents the charge conjugated terms and Ma is the gaugino mass, bij

andm2 are scalar mass-squared terms, and aijk is a scalar cubic coupling term [42].
These terms clearly break supersymmetry because they only involve gauginos and
scalars, giving them mass even if their Standard Model partners, the gauge bosons
and fermions, have low or zero mass [42]. The seesaw mechanism could easily be
applied in this situation. Note, though, that these terms should be generated by
some as yet unknown spontaneous supersymmetry-breaking mechanism, and so
currently only serve as �parameterisations of our ignorance� of this mechanism [6].

Lastly, and most importantly for this paper, the MSSM allows for baryon and
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lepton number violating interactions [7]. Recall that we introduced lepton and
baryon number L and B in Equations 2 and 3. These quantities were conserved in
the Standard Model, but things become more complicated after the introduction
of supersymmetry. We attribute B and L to the spin-0 fermion superpartners, the
squarks and sleptons, but have no insurance that these new baryon and lepton
numbers are conserved [6]. In addition, with all these new bosons we also have
to consider their potential exchanges with the fermions: if allowed, these inter-
actions would lead to a dimension-four proton decay [7]. While Standard Model
bosons are spin-one, the squarks and sleptons are spin-0, which suggests a way to
prevent unwanted interactions [6]. This method will turn out to be R-parity, a
generalization of B and L for supersymmetric theories.

4 R-Parity and its Violation

The primary motivation for the introduction of R-parity is to resolve the issue
of baryon and lepton number violation. R-parity is associated with the discrete
Z2 subgroup of the continuous U(1)R R-symmetry transformations, and serves
to forbid unwanted interactions between the sfermions and their Standard Model
partners [6].

4.1 Why R-Parity?

The �rst question to resolve is why we use R-parity instead of the continuous
version R-symmetry, or R-invariance. R-invariance is a symmetry of the MSSM
Lagrangian where the operator R acts on �elds as

R · S = P

R · P = −S

R · ψ =
1

2
γ5ψ; (106)

S is a scalar �eld, P is a pseudoscalar �eld, and ψ is a spinor �eld [26]. These
equations give the �rst hint that R-invariance may not be the �nal answer: sym-
metries like R-symmetry that act via γ5 are often quantum mechanical anomalies
and so will be broken by quantum e�ects [26]. The main reasons for abandoning
R-invariance come from the masses of the gravitino and gluinos: if the continuous
U(1) R-symmetry is not broken, these particles will not have mass [6]. As a result
of the gravitino's masslessness, supersymmetry with added gravitation will not
be spontaneously broken. Even with spontaneous supersymmetry breaking, R-
invariance acts chirally on gluinos and renders them massless; however, massless
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gluinos would lead to the production of �R-hadrons,� made from quarks, anti-
quarks and gluinos, that have simply not been observed [6]. For these theoretical
and phenomenological reasons, we abandon the continuous R-invariance in favor
of its discrete subgroup R-parity.

How do we de�ne R-parity, then? R-transformations, as in Equation 106, are
de�ned to not act on Standard Model particles, so we assign them R = 0 while
superparticles have R = ±1 [6]. R-parity Rp is de�ned as

Rp = (−1)R =

{
+1 for Standard Model particles

−1 for supersymmetric particles
(107)

where the particles with Rp = +1 are called R-even and particles with Rp = −1
are called R-odd [6].

R-parity o�ers a good way to di�erentiate between Standard Model and su-
persymmetric particles, but how does it prevent unwanted interactions? Several
interactions in the MSSM superpotential violate lepton and baryon number:

W ⊃ εiLiHu + λijkLiLj ēk + λ′ijkQiLj d̄k + λ′′ijkūid̄j d̄k; (108)

the �rst three terms violate lepton number and the last term violates baryon num-
ber [1,7]. In addition to number violations, combining the last two terms produces
the dimension-four contributions to proton decay, and if we assume λ′, λ′′ ∼ 1 and
msquark ∼ TeV, then we get an unacceptably small proton lifetime: τP ∼ 10−20

years instead of the experimentally observed τp > 1032−34 years [48]. Recalling
that the main goal of R-parity is to prevent a combination of baryon and lepton
number violation, we rede�ne Rp in terms of spin S, B and L:

Rp = (−1)2S (−1)3B+L ; (109)

the second term is called matter-parity symmetry [6]. By itself, the imposition of
matter-parity forbids all unwanted interactions, but this solution is �overkill� as we
do not need to forbid all the couplings in order to prevent fast proton decay [48].
Therefore, we will only be considering R-parity.

The de�nition of R-parity in Equation 109 can be rewritten as

Rp = (−1)2S (−1)3(B−L) (110)

which shows that it is actually the quantity B−L that is conserved by R-parity14

[6]. Either baryon or lepton number may be violated, but not both at the same
time.

14This connection was �rst shown by Weinberg and Farrar.
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R-parity conservation has several bene�cial consequences in the MSSM. First,
as we have discussed, it prevents a combination of baryon and lepton number viola-
tion and thus the unphysical rapid decay of the proton. In addition, by preventing
the exchange between Standard Model and supersymmetric particles, R-parity
explains why we have not seen these types of interactions by ensuring that the
supersymmetric particles can only be pair-produced (or at least produced in even
numbers) [6, 42]. By the same reasoning, sparticles can only decay into other
sparticles, resulting in a state with an odd number of the lightest supersymmetric
particle, or LSP [42]. The LSP, which could be a neutralino, sneutrino or grav-
itino, then must be completely stable and, if it is electrically neutral and therefore
only weaky interacting, is a candidate for dark matter [6, 42]. The advantages of
including R-parity in the MSSM are clear.

4.2 Why R-Parity Violation?

Though the imposition of R-parity has convenient results, the symmetry itself is
not physically motivated. Other symmetries that are discrete, continuous, global,
or local can o�er the same restrictions on proton decay as R-parity, but allow R-
parity violating (/Rp) terms [6]. In addition, the collider signatures of the MSSM
depend on whether R-parity is conserved or violated [48]. Therefore, it is worth-
while to explore theories that allow for R-parity violation.

Either the superpotential W or soft supersymmetry breaking terms can give
rise to /Rp terms [6]. We have already seen the /Rp couplings originating in the
superpotential in Equation 108:

W/Rp
= εiLiHu +

1

2
λijkLiLj ēk + λ′ijkQiLj d̄k +

1

2
λ′′ijkūid̄j d̄k. (111)

The �rst term, εiLiHu, is bilinear while the others are trilinear; the trilinear inter-
actions are pictured in Figure 4. The /Rp superpotential nearly doubles the number
of couplings in the MSSM and has 48 parameters from these /Rp couplings: 3 from
εi, 9 from λijk since it is antisymmetric in i and j, 27 from λ′ijk, and 9 from λ′′ijk
since it is antisymmetric in j and k [2, 6].

The soft symmetry-breaking terms that we discussed in Section 3.3.3 must also
be expanded to incorporate /Rp terms. These new soft terms are

L/Rpsoft =
1

2
AijkL̃iL̃j

˜̀̄
k + A′ijkL̃iQ̃j

˜̄dk +
1

2
A′′ijk ˜̄ui

˜̄dj
˜̄dk

+BiHuL̃i + m̃2
diH

†
dL̃i + h.c., (112)

where the A coupling constants have the same antisymmetry properties as the λ
couplings in the superpotential, B is the bilinear coupling term, and m̃2

d is a soft
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Figure 4: The trilinear /Rp couplings [6]. Figures 4a and 4b violate lepton number
and Figure 4c violates baryon number.

mass parameter [6]. All together, these terms add 51 new /Rp parameters.
With all these new parameters, we wish to impose constraints on their values.

In theory, the couplings can induce very large baryon and lepton number violating
e�ects since they are not suppressed by any large mass scale, but in reality our non-
observations of such e�ects limit some of the couplings to be at very small scales
(around 10−26) [6]. In addition, further theoretical, astrophysical and cosmological
bounds are imposed. We mention some constraints from recent LHC results in the
last section.

4.3 Explicit R-Parity Violation

So far we have described how R-parity is violated, but not why. R-parity can
be violated either through explicit additions to the MSSM or other theories, or
may be generated spontaneously. With explicit R-parity breaking we can include
the bilinear or trilinear terms from the superpotential or soft-symmetry breaking
terms, but no matter the combination of terms, we must ensure that they allow for
a consistent quantum �eld theory. A variety of combinations of terms are valid,
but we shall focus on the two most popular scenarios:

• R-parity breaking by bilinear terms: in this scenario only the bilinear cou-
plings εi, Bi, and m̃2

di are considered, for a total of 9 parameters. It is
important to note, though, that without R-parity and lepton number con-
servation, no distinction exists between the Y = −1 Higgs �eld, Hd, and the
lepton �eld Lm, as their gauge charges are the same [6]. Therefore, there
is a choice in the weak interaction basis which leads to di�erent values of
lepton number violating couplings. For example, we can choose a basis in
which εi = 0 but non-zero slepton v.e.v.s are introduced by the soft bilinear
/Rp terms, or choose a basis where these v.e.v.s remain zero but εi 6= 0 [6].
In this bilinear-only theory, then, the λ and λ′ trilinear terms are generated
by rotating the weak eigenstate basis to the mass eigenstate basis, but as a

33



result their parameters are not independent [6]. The advantage of this the-
ory is its predictivity, and the main challenge lies in restricting the neutrino
masses generated by the bilinear terms to an appropriate scale [6].

• R-parity breaking by trilinear terms: in this scenario only the trilinear λ
couplings in the superpotential and their corresponding A couplings in the
soft-symmetry breaking terms are included, for a total of 45 parameters.
The advantage of this theory is that the ambiguity of the weak interaction
basis is absent. However, note that the bilinear terms are generated by
the soft-symmetry breaking terms as, in their presence, the bilinear terms
in the superpotential and scalar potential cannot be simultaneously rotated
away [6]. However, because experimental results limit the allowed amount
of bilinear /Rp we can consider trilinear-only theories without much loss of
accuracy [6].

Most theories incorporate both types of /Rp terms, and we will discuss their e�ects
on neutrino masses later.

4.4 Spontaneous R-Parity Violation

Instead of manually inserting terms into the MSSM, we can also allow R-parity
to be violated spontaneously. The simplest way to accomplish this violation is to
give a vacuum expectation value to a sneutrino [6]. Predictably, a Goldston boson
is generated by the spontaneous lepton number breaking, called the majoron [7].
The majoron and its scalar partner ρ form a decay mode for the Z-boson that
is not observed in experiments [6]. Several solutions exist to this problem: (1)
introduce some explicit lepton number violating terms into the MSSM in order to
give the majoron mass, (2) expand the gauge group to include lepton number so
that the majoron becomes the longitudinal component of a new gauge boson, or
(3) use a non-zero v.e.v. of the new right-handed sneutrino so that the majoron
is an electroweak singlet and so cannot contribute much to the Z-boson decay [6].

4.4.1 Mechanism for Spontaneous /Rp

The simplest solution both the majoron mass and decay problems is (2), where we
extend the MSSM algebra to include B − L symmetry [48]:

GB−L = SU(3)C × SU(2)L × U(1)Y × U(1)B−L. (113)

Each of the super�elds in the MSSM gains a new quantum number, as noted in
Table 5. In addition, we must introduce chiral super�elds for the right-handed
neutrinos ν̂c in order to cancel anomalies [7]. This new U(1)B−L symmetry must
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Field SU(3)C SU(2)L U(1)Y U(1)B−L
Q̂ = (û, d̂) 3 2 +1/6 +1/3

ûc 3̄ 1 −2/3 −1/3

d̂c 3̄ 1 −1/3 −1/3

L̂ = (ν̂, ê) 1 2 −1/2 −1
êc 1 1 −1 +1
ν̂c 1 1 0 +1

Ĥu 1 2 +1/2 0

Ĥd 1 2 −1/2 0

Table 5: A list of the MSSM super�elds and their quantum numbers [48].

be broken in order to get back to the SM/MSSM gauge symmetry. While breaking
B−L symmetry by an even charge conserves R-parity, breaking B−L symmetry by
an odd charge, as is the case with the sneutrino's charge of +1, results in R-parity
violation [47]. Therefore, with a right-handed sneutrino v.e.v. both the U(1)B−L
and R-parity symmetries are spontaneously broken and the majoron becomes the
longitudinal component of the Z ′-boson (the Z-boson associated with the broken
B − L symmetry), e�ectively resolving all of our problems [7].

R-parity can be conserved in this model if the v.e.v. of the majoron is non-zero
while 〈ν̃c〉 = 0 [47]. The conditions for minimizing the majoron x, x̄ are

1

2
M2

Z′ = −|µx|2 +
m2
x tan2 z −m2

x̄

1− tan2 z
(114)

where tan z = x/x̄ and MZ′ = g2
B−L (x2 + x̄2) is the mass of the Z ′-boson [47]. In

the limit x� x̄ with m2
x < 0 and m2

x̄ > 0, the minimization conditions become

1

2
M2

Z′ = −|µx|2 −m2
x. (115)

The left-hand side of this equation is positive, so we must have −m2
x > |µx|2 to

have spontaneous B − L violation [47]. This relationship is reminiscent of the
relationship between µ and mHu in the MSSM: the µ problem [47]. Therefore,
insisting that R-parity is conserved leads to an additional µ-like problem, which
is clearly not ideal.

This problem can be avoided if R-parity is allowed to be violated. Evaluating
the minimization conditions in Equation 114 in the limit where the n� x, x̄ and
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g2
B−L � 1, we �nd the v.e.v.s of the snuetrino and majoron:

n2 =
−m2

ν̃cΛ
2
x̄

f 2m2
x̄ + 1

8
g2
B−LΛ2

x̄

(116)

x̄ =
−m2

ν̃cfµx√
2
(
f 2m2

x̄ + 1
8
g2
B−LΛ2

x̄

) (117)

x =
−m2

ν̃c (axΛ
2
x̄ + fbxµx)

−m2
ν̃cΛ

2
x̄

(
2f 2 − 1

4
g2
B−L

)
+ f 2m2

x̄Λ2
x + 1

8
g2
B−LΛ2

x̄Λ2
x

, (118)

where Λ2
x = µ2

x + m2
x and Λ2

x̄ = µ2
x + m2

x̄ [47]. For the v.e.v.s to be positive and
B − L symmetry to be broken, we require that m2

ν̃c < 0. Unlike the R-parity
conserving case, the mass term is not linked to the µ parameter and so we do not
get another µ problem.

We will �nd, in fact, that in most of parameter space R-parity is unavoidably,
spontaneously broken. In the minimal B − L model, the superpotential is

WB−L = YuQ̂Ĥuû
c + YdQ̂Ĥdd̂

c + YeL̂Ĥdê
c + YνL̂Ĥuν̂

c + µĤuĤd (119)

which we can use to �nd the v.e.v. of the right-handed sneutrino [48]:

〈ν̃c〉 =

√
−4m2

ν̃c

g2
B−L

. (120)

As before, we see that the sneutrino mass is negative in order to have a consistent
symmetry breaking mechanism [48]. For speci�city, we implement the radiative
symmetry breaking mechanism with the minimal supergravity boundary condition
as in Ref. [47]. We choose this mechanism as it requires that one of the masses be
negative, the role which the sneutrino �lls. The next step is to identify the parts of
the parameter space in this theory with R-parity violation and conservation. The
parameters we will use are f = diag(f1, f2, f3), which we can use to �nd the soft
masses of the theory [48]. In Figure 5, where the red dots indicate spontanous R-
parity violation and blue dots indicate R-parity conservation, we clearly see that
R-parity violation dominates the parameter space [48]. The f parameters that
allow for R-parity conservation are those that lead to degenerate right-handed
neutrinos [48]. These results, though determined in a speci�c framework, can
be reached in any B − L symmetry extension of the MSSM [47]. Therefore, we
conclude that in most B − L theories, spontaneous R-parity violation will be
required.
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Figure 5: Plot of the B − L breaking vacua in f -space, with all physical masses
positive [47]. Red is R-parity violation and blue is R-parity conservation.

4.4.2 Minimal U(1)B−L Theory

Now that we have shown that R-parity violation occurs in minimal expansions of
the MSSM, we shall examine this theory in more detail. We have already de�ned
the superpotential in Equation 119, so we need to specify the soft terms [7]:

LB−Lsoft =m2
ν̃c |ν̃c|2 +m2

L̃
|L̃|2m2

ẽc |ẽc|2 +m2
Hu |Hu|2 +m2

Hd
|Hd|2

+

(
1

2
mB−LB̃

′B̃′ + ADν L̃
>iσ2Huν̃

c +BµH>u iσ2Hd + h.c.

)
+ LMSSM

soft .

(121)

As designed, the v.e.v.s of the left- and right-handed sneutrinos, 〈ν̃〉 = vL/
√

2 and
〈ν̃c〉 = vR/

√
2, generate the mass of the gauge bosons while also breaking R-parity

and lepton number. We also �nd that

〈ν̃〉 =
Bν〈ν̃c〉√

2
(
mL̃ − 1

8
g2
B−L〈ν̃c〉2

) (122)

where Bν = 1√
2

(
Yνµvd − ADν vu

)
[7].15 The hierarchy between the left- and right-

handed neutrinos is preserved as 〈ν̃c〉 � 〈ν̃〉.
With R-parity broken and lepton number violated, the quantum numbers that

15Yν is from the term added to the superpotential for the right-handed neutrinos Y ijν L̂iν̂
c
j Ĥu,

and vu and vd are related to the v.e.v.s of the Higgs doublets: 〈Hu〉 = vu/
√

2 and 〈Hd〉 = vd/
√

2
[7].
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distinguish between the leptons, Higgsinos and gauginos are eliminated and so
mixing between these sectors occurs in the generated bilinear terms. Most of these

/Rp bilinear terms are suppressed by neutrino masses, but the term 1
2
gB−Lν

c
(
νcB̃′

)
is not [7]. Trilinear /Rp terms are generated once neutralinos are integrated out
of the theory, but the resulting interactions are negligible considering observed
neutrino masses [7].

Lastly, we will describe the particle content and mass spectrum of this mini-
mally /Rp theory, con�rming that it is realistic. Most of the particles are the same
as in the MSSM, but in the gauge boson sector has an additional neutral boson
from the breaking of B−L, the Z ′-boson. The main e�ect of R-parity breaking is
allowing mixing between particle families, such as the neutralinos and neutrinos:
ν, νc, B̃, B̃′, W̃ 0

L, H̃
0
d and H̃

0
u [7]. In the simple case where the left-handed neutrino

v.e.v. goes to zero and the neutrino Yukawa term is small, we get the neutrino
masses

Mν = Mseesaw +M/Rp

=
1

4
Yν

(
MB−L +

√
4M2

Z′ +M2
B−L

)−1

(Yν)
> v2

u +mM−1
χ̃0 m

> (123)

where m = diag(0, 0, 0, 0, YνvR/
√

2) andMχ̃0 is the MSSM neutralino mass matrix

[7]. Mixing also occurs between the charged leptons and charginos, ec, W̃+
L , H̃

+
u

and e, W̃−
L , H̃

−
d , but since the mixing is proportional to the left-handed neutrinos

and neutrino Yukawa term, its contributions are small [7].
The last sector to analyze is the scalars. Recall that we must specify a weak

interaction basis for the sleptons and Higgsinos. We choose the basis [7]

√
2Im(ν̃, ν̃c, H0

d , H
0
u) for the CP-odd scalars,

√
2Re(ν̃, ν̃c, H0

d , H
0
u) for the CP-even scalars,

(ẽ∗, ẽc, H−∗d , H+
u ) for the charged scalars.

In the simple limit from before, the charged scalar mass matrices decouple into
two eigenvalues representing the mass of the left- and right-handed sleptons and
the MSSM mass matrix for the Higgs �elds [7]. For the CP-odd sleptons, the �rst
eigenvalue corresponds to the majoron �eaten� by the Z ′-boson and is simply the
imaginary part of the right-handed sneutrino, while the second eigenvalue is the
mass of the (physical) left-handed sneutrino:

m2
ν̃ = M2

L̃
− 1

8
g2
B−Lv

2
R −

1

8

(
g2

1 + g2
2

) (
v2
u − v2

d

)
, (124)
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indicating that M2
L̃
> 1

8
g2
B−Lv

2
R [7]. The mass ML̃ is an eigenvalue for the CP-even

sleptons, while the other CP-even eigenvalue is the mass of the real part of the
right-handed sneutrino:

m2
Re(ν̃c) =

1

4
g2
B−Lv

2
R, (125)

which is degenerate with the Z ′-boson mass, M2
Z′ = 1

4
g2
B−Lv

2
R [7]. In these cases,

we �nd that the masses are realistic and equivalent to the MSSM mass modi�ed by
B − L D-term contributions [7]. This result indicates that this minimal U(1)B−L
theory is a possibility, but the observation or not of the theory's collider signatures
will ultimately con�rm or disprove it.

4.5 A Question of Naturalness

A concern that has arisen recently is the naturalness of supersymmetry, especially
the MSSM. The idea of naturalness drove us to look for an explanation for the
hierarchy problem, leading to the development of supersymmetry [25]. However,
results from the LHC place bounds on the supersymmetric partners and their
non-observation has led to tension between the desire for naturalness (that is, no
�ne-tuning) in the theory and the experimental results. Either we can continue to
use the MSSM as our primary model and lessen the requirement of naturalness,
allowing us to �ne-tune particle masses to appropriate scales, or we can continue
to insist on naturalness and abandon the MSSM in favor of theories that can more
easily accomodate experimental results [54]. For example, the Higgs mass in the
MSSM should be around 90 GeV, but has been observed to be 125 GeV [54]. We
will approach R-parity violation from a naturalness perspective and mention other
theories that satisfy the same requirements.

First, though, we must quantify what we mean by �naturalness.� A rough
de�nition is

N 0 ≡
m2
H 1-loop

m2
H

, (126)

where mH = 125 GeV is the physical Higgs mass and mH 1-loop is the one-loop
correction to this mass, which is dependent on the cuto� scale ΛUV and Yukawa
Higgs-fermion coupling λf [25]. In the Standard Model with ΛUV ∼ MP and
λtop ∼ 1, we �nd N 0 ∼ 1030 [25]. As we found in Section 3.2, broken supersym-
metry reduces the dependence of m2

H 1-loop on ΛUV from quadratic to logarithmic.
Therefore, if the mass of the sfermion is not too much greater than the mass of
the Higgs then N 0 is only around 100, a much more natural result [25]. Of course,
it is still up for debate exactly how much �ne-tuning or how little naturalness is
acceptable, but this method gives us a process by which we can evaluate theories.

One of the major tensions with the LHC results is the non-observation of
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Figure 6: A sketch of natural, split supersymmetry [54].

the �rst and second generation superparticles, especially the squarks. A natural
explanation for this is the idea of a split supersymmetry, where the Higgs and
third generation, due to being strongly coupled, are insulated from supersymmetry
breaking while the �rst and second generations experience it more strongly, as
pictured in Figure 6 [54]. As a result, the third generation has soft masses less
than the the masses of the �rst and second generation, explaining why we have not
seen these heavier particles yet. Because of this splitting, the soft masses of the
two generation groups have di�erent sources [54]. This theory e�ectively creates
an inverted hierarchy in the superpartners. In this theory, R-parity violation can
allow all the generations to have degenerate masses as it hides their signatures in
collider experiments [54].

The inverted hierarchy created by split supersymmetry also arises in theories
designed to resolve the Higgs mass problem. One such theory is e�ective super-
symmetry, where the inverted hierarchy is realized in various ways [25]. In this
theory, extra �elds may be added to the e�ective theory to raise the Higgs mass,
and so the visible particles are the supersymmetric third generation and possibly
these new particles [25]. On the other hand, a class of theories called focus point
supersymmetry de�nes all generations to be heavy; this pattern comes from an
approximate U(1)R symmetry [25]. In addition to the splitting between genera-
tions, there is a large mass di�erence between the gluinos and squarks and the
lighter superparticles [25]. Problematically, this hierarchy would allow the heavier
particles to decay into energetic particles, leading to distinct signals (that have
not been observed), as well as decreased naturalness due to the bounds on the
lighter particles [25]. However, another theory called compressed supersymmetry
solves this by making the superpartner spectrum degenerate. A summary of these
theories and their strengths can be found in Table 6.

These natural theories explain the lack of supersymmetry observations at the
LHC, but R-parity can also ful�ll that task. By allowing superparticles to decay,
the particles are e�ectively hidden from detection [54]. Many possibilities for R-
parity violation exist, but similarities are present: not all the couplings can be
large, and strong bounds on some of the individual parameters [25]. Though the
theory by itself lacks a few of the features in Table 6, when added to pre-existing
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E�ective Focus
Point

Compressed /Rp

Naturalness X X X X
Grand Uni�cation X X X X
WIMP Dark Matter X X X
LHC Null Results X X X X

Higgs Mass X
Flavor/CP Constraints X X

Table 6: A summary of the strengths and attributes of natural SUSY theories [25].

theories, such as the MSSM or split supersymmetry, R-parity violation can improve
the naturalness of theories while helping to explain the null results at the LHC.

5 Neutrino Mass in R-Parity Violating Theories

In the Standard Model, implementing neutrino mass involves adding sterile neu-
trinos or modifying the Higgs sector, but in the MSSM, such measures are not
necessary. If lepton number is violated,16 as in R-parity violating versions of the
MSSM, then neutrinos gain Majorana masses without any new �elds. Therefore,
neutrino mass is intrinsically supersymmetric [56]. As non-Standard Model �elds
have not been experimentally veri�ed, /Rp theories have a clear phenomenological
advantage.

In addition to generating neutrino masses, any successful theory must also
generate the correct mixing angles and hierarchy between the neutrinos. The
current experimental values for the mass squared di�erences and mixing angles
are

∆m2
23 = 2.0× 10−3 eV2, ∆m2

12 = 7.2× 10−5 eV2,

sin2 θ23 = 0.5, sin2 θ12 = 0.3, sin2 θ13 < 0.074, (127)

so θ23 ∼ 45◦ is maximal, θ12 ∼ 30◦ is large, and θ13 ≤ 15◦ is small [52]. Neutrino
oscillation experiments do not impose a scale on neutrino mass, but we can see a
hierarchy: the �rst and second neutrinos are close in mass while the third neutrino
is much larger (or smaller). In this paper, we will assume m1 < m2 � m3.
Based the WMAP results, we can determine, if m1 is negligible, m2 ∼ 0.008 eV
and m3 ∼ 0.04 eV [52]. These bounds present a challenge, as /Rp couplings may

16Note that if lepton number is violated, baryon number is not in order to ensure a suitably
long proton lifetime.
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generate neutrino masses that are too large by several orders of magnitude [6]. In
addition, mass hierarchies are generally associated with small mixing angles, so we
must construct theories carefully in order to ensure both large mixing angles and
an appropriate mass hierarchy [30]. We will examine the general e�ects of various
contributions to neutrino masses before describing various speci�c theories.

5.1 General Mass Contributions

R-parity violating theories generate neutrino mass in two types of ways: tree-level
contributions from bilinear /Rp and loop-level contributions from both trilinear and
bilinear /Rp terms. In general, the exact leading e�ects from these contributions
are model-dependent, but we can describe their e�ects in broad terms. We will
use the weak interaction basis where vm = 0, v0 = vd, tan β ≡ vu/vd and the
down-type quark and lepton mass matrices are [30]

(md)nm =
1√
2
vdλ

′
0nm, (m`)nm =

1√
2
vdλ0nm. (128)

Note that the physical observables are independent of basis, so the results we �nd
here are general.

Each of the contributions that we will examine involves two /Rp parameters.
These interactions can be trilinear with λ-type couplings; lepton/Higgsino mass
insertions, with µi and vi where vi can also be left-right mixing mass insertion
parameter; or soft mass insertions, with Bi and m̃

2
dk

[6]. Since the generation of
Majorana neutrino mass depends on lepton number L being broken by two units,
and each /Rp interaction violates L by one unit, we must have two such terms in
order for the masses to be generated.

5.1.1 Tree-Level (µµ) Contributions

We begin with the tree-level contributions to neutrino mass, pictured in Figure
7, which arise from the /Rp bilinear terms. At the tree level in supersymmetric
theories, the three neutrinos mix with the four neutralinos, so the tree level neutral
fermion mass matrix is 7× 7 [52]:

M1 0 mZ sin θW
vu
v
−mZ sin θW

vd
v

0
0 M2 −mZ cos θW

vu
v

mZ cos θW
vd
v

0
mZ sin θW

vu
v
−mZ cos θW

vu
v

0 µ µi
−mZ sin θW

vd
v

mZ cos θW
vd
v

µ 0 0
0 0 µi 0 0

 . (129)
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νi νj
µi χα µj

Figure 7: Diagram for tree-level mass insertion. The µ points represent a mixing
between the neutrino and a higgsino, while the cross in the center represents a
neutralino Majorana mass term [30].

This matrix is in the
{
B̃, W̃3, H̃u, H̃d, νi

}
basis, where M1 is the bino mass, M2

is the wino mass, and µi is a parameter from the superpotential17 [30]. The
neutralinos can be integrated out to get the neutrino mass matrix,

[mν ]
µµ
ij = Xtreeµiµj, (130)

where

Xtree =
m2
Zmγ̄ cos2 β

µ (m2
Zmγ̄ sin 2β −M1M2µ)

, (131)

with mγ̄ ≡ cos2 θWM1 +sin2 θWM2 [30]. If we assume, as we will from now on, that
the relevant masses are at the electroweak scale m̄, then Equation 130 simpli�es
to

[mν ]
µµ
ij '

cos2 β

m̄
µiµj. (132)

The contributions to the neutrino masses at tree level are the eigenvalues of the
neutrino mass matrix, so we assign the only non-zero value to the heaviest neutrino,
mtree

3 = Xtree (µ2
1 + µ2

2 + µ2
3) [30].

We can also write the resultant neutrino mass in a basis-invariant way:

mtree
3 = Xtreeµ

2 sin2 ξ, (133)

where ξ measures the separation between νi and µi as cos ξ =
∑

i viµi/vdµ [52].
The alignment of νi and µi creates an appropriately small neutrino mass, but in
general the two values are not correlated. Therefore, some amount of �ne-tuning
is required unless we �nd a mechanism that generates their alignment [52]. In any
case, the main point of this discussion is that, in general, we cannot avoid giving
mass to one of the neutrinos through tree level contributions.

17Note that |µ|2 =
∑
i |µi|2 [52].
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dL

d̃R

dR

d̃L

νi νj
Figure 8: Diagram for a λ′ loop contribution. The squark changes from right-
handed to left-handed at the point and the cross represents a mass insertion [52].

5.1.2 Trilinear (λλ and λ′λ′) Loop Contributions

Neutrinos also receive mass from fermion-sfermion loops that depend on the tri-
linear terms: λ associated with the charged leptons and λ′ associated with the
down-type quarks. From the charged lepton loops, we get a contribution of

[mν ]
λλ
ij '

∑
l,k

1

8π2
λilkλjkl

m`l∆m
2
˜̀
k

m2
˜̀
k

, (134)

which is of the order

[mν ]
λλ
ij ∼

∑
l,k

1

8π2
λilkλjkl

m`lm`k

m̄
(135)

in the electroweak mass scale approximation [52]. Likewise, the down-type quark
loop contribution is

[mν ]
λ′λ′

ij '
∑
l,k

3

8π2
λ′ilkλ

′
jkl

mdl∆m
2
d̃k

m2
d̃k

∼
∑
l,k

3

8π2
λ′ilkλ

′
jkl

mdlmdk

m̄
, (136)

where the 3 in the numerator arises because of the color factor for quarks [30].
Figure 8 shows this interaction. These equations are only approximations because
we have ignored the quark �avor mixing.

These loop-generated masses are doubly Yukawa suppressed by the /Rp cou-
plings λ (λ′) and the charged lepton (down-type quark) mass in the denomina-
tor [30]. Since these fermion masses are relatively large, the trilinear contributions
are not usually signi�cant.
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ν̃i

H

ν̃j

νi νj

χα

Bi Bj

Figure 9: Diagram for a BB loop diagram. The B points represent a mixing
between the sneutrinos and neutral Higgs bosons [30].

5.1.3 Bilinear Loop Contributions

If R-parity is violated by bilinear terms at the tree level, it is violated by bilinear
terms at the loop level as well. Sneutrinos and neutral Higgs bosons mix at the
tree level which also mixes the sneutrinos and antisneutrinos, leading to a splitting
between the sneutrino eigenstates, which in turn generates Majorana neutrino mass
at the loop level [52]. The Bi parameters are the couplings between the sneutrinos
and Higgs, so we call these contributions BB loops, as shown in Figure 9. In the
electroweak mass scale, the contributions to the neutrino mass matrix is

[mν ]
BB
ij ∼

g2

64π2 cos2 β

BiBj

m̄3

= CijBiBj (137)

where Cij is a matrix [30]. If the sneutrinos are degenerate, then Cij is rank one
and so only one neutrino will gain mass from this loop contribution [52]. Is this
neutrino m3 as in the case of the tree level bilinear contributions? Since in general
Bi is not related to µi, we can say that m2 gets mass from BB loops and assign
m1 to remain massless. If the sneutrinos are non-degenerate, then the mass of m1

is a measure of their non-degeneracy [52]. Overall, contributions from BB loops
are suppressed by the couplings Bi, which may be small, and cos2 β. However,
these suppressions are not as great as those on the other loop contributions, so
BB loops are the dominant loop contribution [30].

The two types of bilinear terms can be combined to contribute to neutrino
mass, resulting in µB loop contributions. These loops are also a result of the
neutrino-Higgs and snuetrino-Higgs boson mixings [52]. In the electroweak mass
scale, the contribution to the neutrino mass matrix is

[mν ]
µB
ij ∼

g2

64π2 cos2 β

µiBj + µjBi

m̄2
; (138)
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dL

d̃L

dR
νi νj

µi

Figure 10: Diagram for a µλ′ loop diagram [52]. Note that the �rst part is from
the tree-level diagram while the loop is from the λ′ loop contribution diagram.
The µλ and µB diagrams can be constructed in a similar way.

since it depends on both the µ and B couplings, as well as cos2 β, the e�ect of these
loops is second-order if the tree level is dominant [30]. Therefore, these terms are
not signi�cant.

5.1.4 Mixed Loop Contributions

The combinations µλ and µλ′ depend on both bilinear and trilinear /Rp and also
contribute to the neutrino masses. Using the electroweak mass scale as usual, the
contribution to the neutrino mass matrix from the µλ loops is

[mν ]
µλ
ij ∼

∑
k

1

8π2
gm`k

µiλjkk + µjλikk
m̄

. (139)

The contribution from the µλ′ loops, shown in Figure 10, is similar,

[mν ]
µλ′

ij ∼
∑
k

3

8π2
gmdk

µiλ
′
jkk + µjλ

′
ikk

m̄
, (140)

where we ignore squark mixing as before [30]. Compared to the λλ and λ′λ′ loops,
these diagrams only have one Yukawa suppression instead of two; however, when
the tree level contributions are dominant these loops become second order, as in
the case of the µB loops [52]. Again, these contributions are insigni�cant.

5.1.5 A Simple Model of Neutrino Mass

With these contributions to the neutrino mass matrix, how do we ensure that
our model is consistent with the results in Equation 127? In this introductory
model, we will assume that the neutrino mixing matrix U , generated from the
experimental results, is approximately tribimaximal, meaning that [41]

θ13 = 0, sin2 2θ23 = 1, tan2 θ12 = 1/2. (141)
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The tribimaximal mixing matrix, and thus the neutrino mixing matrix, is

U =


√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2

 ; (142)

the three columns of this matrix roughly resemble the meson nonet [41]. We use
this matrix to diagonalize the neutrino mass matrix, given by

mν = [mν ]
µµ
ij + [mν ]

λλ
ij + [mν ]

λ′λ′

ij

' cos2 β

m̄
µiµj +

∑
l,k

1

8π2
λilkλjkl

m`lm`k

m̄
+
∑
l,k

1

8π2
λ′ilkλ

′
jkl

mdlmdk

m̄
(143)

in this simple model [39]. Therefore, we have diag(m1,m2,m3) = U−1mνU and
can reverse this equation to �nd an expression for the mass matrix in terms of its
eigenvalues:

mν = Udiag(m1,m2,m3)U−1

=


√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2

×
m1 0 0

0 m2 0
0 0 m3

×

√

2/3 1/
√

3 0

−1/
√

6 1/
√

3 −1/
√

2

−1/
√

6 1/
√

3 1/
√

2


=

 1
3

(2m1 +m2) 1
3

(−m1 +m2) 1
3

(−m1 +m2)
1
3

(−m1 +m2) 1
6

(m1 + 2m2 + 3m3) 1
6

(m1 + 2m2 − 3m3)
1
3

(−m1 +m2) 1
6

(m1 + 2m2 − 3m3) 1
6

(m1 + 2m2 + 3m3)

 . (144)

By setting the result in Equation 144 equal to Equation 143, we can �nd the
values of the R-parity violating couplings at the weak scale that generate accurate
neutrino masses and mixing angles [39]. In the models that we will study in the
next sections, we will not assume the tribimaximal form of the neutrino mass
matrix as recent results have proven that θ13 is nonvanishing.

5.2 Bilinear Models

With the general characteristics of the contributions established, we examine sev-
eral speci�c theories of neutrino mass. The minimal extension of the MSSM in-
volves only bilinear interactions,18 and such a model can also be applied to theories
with split supersymmetry. The bilinear terms can come from either the superpo-
tential or the soft supersymmetry breaking sector, and results in one massive

18Trilinear-only theories are not a natural choice as trilinear /Rp will generate loop-level bilinear
terms anyway, so we will neglect them in this paper [6].
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neutrino from the tree-level terms and the other two neutrinos gaining mass from
radiative corrections to the neutrino-neutralino mass matrix [6]. The bilinear-
only theory is subject to some �ne-tuning, but this problem can be resolved by
implementing �avor symmetries, as we shall see in the next section.

5.2.1 Bilinear /Rp in the MSSM

The most basic, minimal extension of the MSSM, called bilinear R-Parity violation
(BRPV), contains only one bilinear term in the superpotential:

W = WMSSM + εiL̂iĤu, (145)

where the εi = (εe, εµ, ετ ) parameters break lepton number [9]. This parameter
has units of mass and must be small (εi � mW ) in order to generate appropriate
neutrino physics, but there is no reason a priori that this should be the case
[19]. This problem can be resolved if we implement a new symmetry, such as
horizontal family symmetry, or assume that R-parity is violated spontaneously,
where ε = Yukawa coupling× sneutrino v.e.v. [32].

The BRPV also contains new soft supersymmetry breaking terms:

LBRPVsoft = BεiL̃iHu (146)

where Bεi = Bεi has units of mass [9]. The two couplings εi and Bεi induce
sneutrino v.e.v.s proportional to ε, which is why we required ε to be so small [9].
As previously discussed, bilinear terms also induce neutrino and neutralino mixing,
resulting in the 7 × 7 neutral fermion mass matrix, which we will recast in the{
−iB̃,−iW̃3, H̃u, H̃d, να

}
basis as

MN =

(
Mχ0 m>

m 0

)
(147)

in order to see the seesaw structure. In the new basis, the neutralino mass matrix
is

Mχ0 =


M1 0 −1

2
g′vd

1
2
g′vu

0 M2
1
2
gvd −1

2
gvu

−1
2
g′vd

1
2
gvd 0 −µ

1
2
g′vu

1
2
gvu −µ 0

 (148)

and the m matrix characterizes the R-parity breaking in the theory:

m =

−1
2
g′v1

1
2
gv1 0 ε1

−1
2
g′v2

1
2
gv2 0 ε2

−1
2
g′v3

1
2
gv3 0 ε3

 , (149)
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where vi are the v.e.v.s of the sneutrinos [32]. Because εi is small, Mχ0 > m
and Equation 147 closely resembles Equation 69. Using the seesaw mechanism
as in Section 3.1.2, we �nd the e�ective light neutrino mass matrix to be m0

ν =
−mM−1

χ0 m
>. We can expand this matrix to

[
m0
ν

]
ij

=
M1g

2 +M2g
′2

4 det (Mχ0)
ΛiΛj (150)

where Λi = µvi + vdεi [19]. This parameter Λi is called the alignment vector and is
related to ξ [6]. The neutrino masses are the eigenvalues of m0

ν and, as we found
in the general tree-level case, there is only one non-zero neutrino mass.

We can also gain some information on the mixing angles. The e�ective neutrino
mass matrix can be diagonalized by a matrix Vν as V

>
ν m

0
νVν , where

Vν =

1 0 0
0 cos θ23 − sin θ23

0 sin θ23 cos θ23

×
cos θ13 0 − sin θ13

0 1 0
sin θ13 0 cos θ13

 ; (151)

we can then �nd the mixing angles to be

tan θ13 =
Λe√

Λ2
µ + Λ2

τ

(152)

tan θ23 = −Λµ

Λτ

(153)

in terms of the alignment vector [32]. From the experimental results, we know
θ23 ∼ 45◦ so Λµ ' Λτ , and since θ13 is small, Λe < Λµ,Λτ .

Since we only get one neutrino mass from the tree level matrix m0
ν , the next-

most massive neutrino arises at the one-loop level. These corrections to m0
ν are,

schematically, [
m1
ν

]
ij
' a(1)ΛiΛj + b(1) (Λiεj + Λjεi) + c(1)εiεj (154)

where the coe�cients are functions of supersymmetric parameters [9]. More specif-
ically, we �nd[

m1
ν

]
ij

=
1

2

[
Π̃ν
ijm

2
i + Π̃ijm

2
j

]
− 1

2

[
Mχ0

i
Ẽν
ijm

2
i +Mχ0

j
Ẽν
ijm

2
j

]
(155)

where Π̃ and Ẽ are the renormalized self-energies [32]. This new mass matrix
m1
ν generates an additional non-zero eigenvalue, giving mass to the second neu-

trino. This mass mν2 has contributions from many types of loops, but the bottom-

49



sbottom loop contributes most signi�cantly [32]. Simplifying the mass equation
further, we �nd that

mν2 '
3

16π2
sin(2θb̄)mb∆B

b̄2b̄1
0

ε̃21 + ε̃22
µ2

, (156)

where we have only taken into account the self-energy terms proportional to ε̃i× ε̃j
[32]. In this equation, B0 is a Passarino-Veltman function, mb is the bottom quark
mass, and ε̃1 and ε̃2 are functions of εi and Λi [32]. The third neutrino remains
massless in this model.

With the loop-level mass matrix, we can now �nd an expression for the third
mixing angle. In the basis where the tree-level mass matrix m0

ν is diagonal, the
one-loop level corrected mass matrix is

m1
ν =

c1ε̃1ε̃1 c1ε̃1ε̃2 c2ε̃1ε̃3
c1ε̃2ε̃1 c1ε̃2ε̃2 c2ε̃2ε̃3
c1ε̃3ε̃1 c1ε̃3ε̃2 c0|Λi|2 + c2ε̃3ε̃3

+ . . . (157)

where the coe�cients c are functions of supersymmetric parameters and we ignore
less signi�cant terms [32]. We can approximate this matrix by de�ning

x ≡ c1|ε̃i|2

c0|Λi|2
� 1; (158)

therefore, the mass matrix becomes

m1
ν = c0|Λi|2

x(ε̃1ε̃1)/|εi|2 x(ε̃1ε̃2)/|εi|2 x(ε̃1ε̃3)/|εi|2
x(ε̃2ε̃1)/|εi|2 x(ε̃2ε̃2)/|εi|2 x(ε̃2ε̃3)/|εi|2
x(ε̃3ε̃1)/|εi|2 x(ε̃3ε̃2)/|εi|2 1 + x(ε̃3ε̃3)/|εi|2

 . (159)

The mass matrix can now be diagonalized by Ṽ >ν m
1
νṼν and, from this equation,

we �nd that

tan θ12 =
ε̃1
ε̃2

; (160)

this result is more approximate than the other mixing angle equations as we are
only considering bottom-sbottom loops [32]. In terms of the original parameters
εi and Λi, the mixing angle is

tan θ12 =

[
εe
(
Λ2
µ + Λ2

τ

)
− Λe (Λµεµ + Λτ ετ )

]
/
√(

Λ2
µ + Λ2

τ

) (
Λ2
e + Λ2

µ + Λ2
τ

)
[Λτ εµ − Λµετ ] /

√
Λ2
µ + Λ2

τ

.

(161)
Clearly, this expression is much more complex than for the other two mixing
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angles, but we can place some further restrictions on the parameters. We cannot
have Λν = Λτ and εµ = ετ else the denominator will be zero. In order to get the
experimental value for θ23 we de�ned Λν = Λτ , so care must be taken to avoid
εµ = ετ as well. In addition, since we have observed θ12 ∼ 30◦, we see that ε̃21 ∼ 3ε̃22.

5.2.2 Bilinear /Rp in Split Supersymmetry

The simple bilinear model can also be applied to theories beyond the MSSM with
similar results. As discussed in Section 4.5, split supersymmetry imposes an in-
verse hierarchy where the �rst and second generations experience supersymmetry
breaking more strongly than the third generation and Higgs sector. As a result,
split supersymmetry is a high-scale theory with heavy scalars (except the Higgs
boson) and light fermions [15]. The theory has several advantages, but is not very
natural given the arbitrary split between the generations. However, the hope is
that the addition of R-parity violating terms generates accurate neutrino results
and increases the naturalness of the theory.

The tree-level bilinear /Rp contribution proceeds in much the same way as in the
MSSM. We begin by adding the /Rp terms to the split supersymmetry Lagrangian:

LSS/Rp = εiH̃
>
u iσ2Li −

1√
2
aiH

>iσ2

(
−g̃dσW̃ + g̃′dB̃

)
Li + h.c. (162)

where g̃ are the split supersymmety Higgs-higgsino-gaugino couplings [17,20]. Af-
ter the Higgs boson gains its v.e.v. and ignoring terms that are irrelevant to
neutrino mass, we can rewrite Equation 162 as

LSS/Rp = −
[
εiH̃

0
u +

1

2
ai

(
g̃dW̃3 − g̃′dB̃

)]
νi + h.c. + . . . , (163)

where v is the v.e.v. of the Standard Model-like Higgs �eld [20]. As before,
neutrino-neutralino mixing is induced and we can write the resulting mass matrix
as

MSS
N =

(
MSS

χ0

(
mSS

)>
mSS 0

)
(164)

where the neutralino mass matrix is

MSS
χ0 =


M1 0 −1

2
g̃′dv

1
2
g̃′uv

0 M2
1
2
g̃dv −1

2
g̃uv

−1
2
g̃′dv

1
2
g̃dv 0 −µ

1
2
g̃′uv

1
2
g̃uv −µ 0

 (165)
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and the mixing matrix is

mSS =

−1
2
g̃′da1v

1
2
g̃′da1v 0 ε1

−1
2
g̃′da2v

1
2
g̃′da2v 0 ε2

−1
2
g̃′da3v

1
2
g̃′da3v 0 ε3

 ; (166)

these matrices are in the same basis as before:
{
−iB̃,−iW̃3, H̃u, H̃d, να

}
[17]. The

neutrino mass matrix is then, of course, mSS
ν = −mSS

(
MSS

χ0

)−1 (
mSS

)>
, which

can be written as [
mSS
ν

]
ij

= v2M1g̃
2
d +M2g̃′

2

d

4 det
(
MSS

χ0

) λiλj (167)

where λi ≡ aiµ + εi and is related to Λi as Λi = λivd [17, 20]. Since this result
is similar in form to Equation 150, it is no surprise that we again get only one
massive neutrino from the tree-level contribution.

In the MSSM case, the bilinear loop contributions were considered next, but in
split supersymmetry, we shall see that these contributions are negligible. In this
theory, the one-loop contributions contain a factor of

ηi
m2
Z

m2
Li

, (168)

where mZ is the mass of the Z-boson, mLi is the slepton mass (on the order of the
split supersymmetry scale mS) and ηi measures the mixing between the sleptons
and Higgs bosons [15]. While ηi usually is large enough to produce signi�cant
contributions at loop level, in split supersymmetry mS can be on the order of
109 − 1013 GeV [15]. The Z-boson mass remains at around 90 GeV and so the
term in Equation 168 becomes negligible, no matter the value of ηi.

To see another reason why we need more than just bilinear loop terms, we will
examine the one-loop contributions. In the MSSM the Higgs bosons mix with the
sneutrinos, but in split supersymmetry the sneutrinos are much heavier than the
light Higgs boson, and so they decouple. As a result, the only important contri-
butions are the loops involving the neutralinos and the light Higgs, as pictured in
Figure 11. The couplings in this diagram, unlike their MSSM equivalents, involve
the matrix N , which is 7× 7 and diagonalizes MN in Equation 147, and replaces
the Higgs mixing angle with α = β−π/2 as it is decoupled [20]. The contribution
from the Higgs boson has the form

∆[m1
ν ]ij ∼ Ahλiλ2 (169)

52



χ0
k

H

νj νi

Figure 11: Loop contribution to neutrino mass from neutralinos and light Higgs
bosons [20].

where Ah involves the couplings; the other insigni�cant contributions have the
same form [20]. This type of contribution merely renormalizes the tree level neu-
trino mass matrix and does not break its symmetry, so mass is not generated for
all the neutrinos [20]. Therefore, in order to generate mass for the two lighter neu-
trinos, as desired at the loop level, we must have contributions from non-bilinear
loop terms.

5.3 Flavor Symmetry Models

Recall that in our general exploration of tree- and loop-level contributions, the
/Rp couplings are not restricted, but we can constrain the couplings with �avor
symmetries [6]. This additional symmetry, while not entirely natural, can allow
BRPV models to generate appropriate neutrino results.

5.3.1 A4 × Z2 Symmetry Model

The �rst �avor symmetry model proposed, in Ref. [9], adds an A4×Z2 symmetry
and singlet super�eld19 Ŝ to the MSSM. The Z2 symmetry serves to forbid all /Rp

interactions except the εL̂Ĥu bilinear term needed for BRPV and the A4 symmetry,
since all MSSM �elds are triplet representations in it, reduces the number of BRPV
parameters to one [9]. We de�ne a new v.e.v. alignment for the Higgs and left-
handed sneutrinos because of this new triplet structure:

〈Hu〉 =
1√
2

(vu1 , vu2 , vu3) = vu3 (ru,−1, 1) (170)

〈Hd〉 =
1√
2

(vd1 , vd2 , vd3) = vd3
(
rd,−1, 1

)
(171)

〈ν̃L〉 =
1√
2

(
vLe , vLµ , vLτ

)
= vLτ (aν ,−1, 1) , (172)

where r and a are parameters in the fermion mass matrix [9]. We also rede�ne
Λi = µvLi + vdiε; there is now only a single bilinear parameter ε instead of three εi

19Like in the NMSSM.
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because of the �avor symmetry [9]. As a result, we �nd

Λµ = µvLµ + vd2ε

= µ(−1)vLτ + (−1)vd3ε

= − (µvLτ + vd3ε)

= −Λτ (173)

which is a condition we wanted to impose on Equation 153 for an accurate θ23

mixing angle. As opposed to the plain BRPV theory, this condition is required,
not merely suggested, in the �avor theory.

To see that the �avor symmetry BRPV theory continues to generate appropri-
ate neutrino values, we �nd the neutrino mass matrix to be, schematically,

mν =

 c+ α(2b+ αa) c+ b(α− 1)− αa b+ c+ α(a+ b)
c+ b(α− 1)− αa a− 2b+ c c− a
b+ c+ α(a+ b) c− a a+ 2b+ c

 (174)

where we have de�ned

Λµ = Λτ = Λ

Λe = αΛ

a =
(
a(0) + a(1)

)
Λ2

b = b(1)Λε

c = c(1)ε2 (175)

as our parameters [9]. The a(0) parameter is equal to the coe�cient in Equation 150
and a(1), b(1), c(1) are the same as in Equation 154. We see that when the one-loop
contributions are b = c = 0, mν reduces to the tree-level m0

ν with only one non-
zero eigenvalue, mν3 = a|Λi|2 = a(2 + α2) with an eigenvector along the (α, 1,−1)
direction [9]. We can assume that b, c� a (the loop parameters are smaller than
the tree-level parameter) which generates the phenomenological result mν2 � mν3 .

5.3.2 Z3 Symmetry Model

The A4 × Z2 �avor symmetry, though it only involves bilinear terms, adds some
unwanted complexity to the scalar sector. Therefore, a simpler symmetry, Z3, is
proposed in Ref. [46] by Peinado and Vicente, which eliminates Ŝ and adds trilin-
ear /Rp terms.20 Since we argued in the previous section that these trilinear terms

20Other formulation of Z3 models have been proposed but this model accommodates the most
recent neutrino results, speci�cally a non-vanishing θ13.
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Field L̂1 L̂2 L̂3 Ê1 Ê2 Ê3 Ĥu Ĥd

Z3 1 ω ω2 1 ω2 ω 1 1

Table 7: The Z3 charges of the MSSM super�elds, where ω = ei2π/3.

must be included (in the absence of additional super�elds) to generate all neu-
trino masses, this solution seems more natural while also inducing the appropriate
neutrino masses and mixings.

Under the Z3 symmetry, we assign the charges in Table 7 to the MSSM super-
�elds [46]. This particular form of the charges leads to a diagonal mass matrix
for the charged leptons. In addition, the quark super�elds are singlets under Z3

so that the only non-zero quark couplings in the superpotential are λ122, λ133 and
λ231 [46]. The relevant lepton terms in the superpotential are

WZ3 = εL̂1Ĥu + Y i
e ÊiL̂iĤd + λijkL̂iL̂jÊk + λ′jkQ̂jL̂1d̂k. (176)

Note that, as in the A4 × Z2 �avor symmetry theory, we only have a single ε
parameter. In the Z3 model, baryon number conservation must be imposed as we
cannot have both baryon and lepton number violation, but by allowing trilinear
terms we do not automatically forbid the baryon number violating terms. The Z3

symmetry is softly broken in the scalar potential, and the relevant terms are of
the form

Vsoft ∼ m2
LiHd

L̃∗iHd +BεL̃iHu, (177)

where m2
LiHd

and Bε are generation-dependent couplings that we will assume are
uni�ed at the grand uni�cation scale [46]. Importantly, the generational coupling
equality does not hold at m̄, where the third generation Yukawa couplings are larger
than the other two due to the renormalization group equations [46]. Note that
this pattern, except inverted, also occurs in split supersymmetry. This coupling
inequality is essential for generating mixing between the second and third neutrino
generations.

Another important assumption is that, as in the BRPV model, our single ε pa-
rameter is small. In the BRPV model, the tree-level mass matrix is proportional
to this parameter, which e�ectively restricts the single neutrino mass to be appro-
priately small as the loop level contributions only a�ect the other two neutrino
masses. However, in the Z3 model we have additional bilinear soft terms that con-
tribute signi�cantly at the loop level, rendering the tree-level bilinear contributions
negligible.

We will therefore discuss the bilinear loop level contributions �rst. Relatively
large m2

LiHd
and Bε couplings are required in order to get suitably large neutrino
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masses; if the loop contributions are too small, then the sneutrino v.e.v.s and
thus the tree-level contributions are too large [46]. To keep the sneutrino v.e.v.s
small, we must impose some �ne-tuning so that the loop-level contributions to
them cancel out:

m2
LiHd

vd +Bεvu ' 0, (178)

which implies the relation
m2
LiHd

' tan βBε (179)

between the loop-level parameters [46]. By de�ning the lepton number violation
scale as m2

LiHd
, Bε ∼ m2

/Rp
, we write Equation 137 as

[
m1
ν

]BRPV
ij

∼ g2

16π2

m2
/Rp
·m2

/Rp

m̄3
(180)

where the β dependence is included in m2
/Rp

[46]. In Section 5.1.3 we noted that

the only suppression on this contribution was the value of the parameter. Because
the parameters m2

LiHd
and Bε are large in this model, this loop contribution is

signi�cant.
Because the Z3 symmetry model insists on a splitting between the third and

�rst and second generations in the m2
LiHd

and Bε parameters, we must take this
deviation into account when constructing the neutrino mass matrix. Therefore,
we rewrite the bilinear loop level contribution as

[
m1
ν

]BRPV
ij

= a

1 1 1
1 1 1
1 1 1

+ d

0 0 1
0 0 1
1 1 2

 , (181)

where a is equal to the right-hand side of Equation 180 and d is a similar equation
that replaces the parameter m2

/Rp
with m2

/Rp
+ δm2 [46]. The term δm2 measures

the third generation's deviation from universality and its e�ects are shown in the
d-matrix in [m1

ν ]
BRPV
ij .

Next we consider the trilinear /Rp terms. The only allowed λ couplings are λ122,
λ133 and λ231, which only contribute to the 11, 23 and 32 elements of the neutrino
mass matrix [46]. In addition, the λ′ couplings contribute to the 11 element since
only L̂1 is included in that term. The neutrino mass contributions therefore look
like [

m1
ν

]TRPV
ij

=

b 0 0
0 0 c
0 c 0

 (182)

where c is from the λ terms and b is from the λ′ terms [46]. We �nd, using Equation
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Coupling Bound Source
λ122 2.7× 10−2 Neutrino masses
λ133 1.6× 10−3 Neutrino masses
λ231 0.05 Leptonic τ decay

λ′jk(j 6= k) 0.02− 0.47 Various processes
λ′jk(j = k) 3.3× 10−4 − 0.02 ββ0ν decay, neutrino masses

Table 8: The experimental bounds on loop-level couplings [6, 46].

135, that [
mTRPV
ν

]λλ
23

= c ∼ 1

16π2
λ2

231µ tan β
memτ

m̄
(183)

and, from Equation 136,[
mTRPV
ν

]λ′λ′
11

= b ∼
∑
l,k

3

8π2
λ′1lkλ

′
1klµ tan β

mdlmdk

m̄
. (184)

Since the masses of quarks and leptons are experimentally known and the λ cou-
pling bounds are given in Table 8, the neutrino masses depend mostly on the µ
and tan β parameters. For example, mass contributions to c on the order of 0.1
eV are given by µ ∼ m̄ and tan β = 10 [46].

The total mass contribution from the bilinear and trilinear /Rp loops is found
by summing Equations 181 and 182:

mν =
[
m1
ν

]BRPV
ij

+
[
m1
ν

]TRPV
ij

=

a+ b a a+ d
a a a+ c+ d

a+ d a+ c+ d a+ 2d

 . (185)

Note that d, which measures the third generation's splitting from the other two
at the SUSY scale, contributes to both the θ23 deviations from maximal and,
simultaneously, θ13 deviations from zero [46]. This correlation between the two
mixing angles can be con�rmed with numerical studies as in Figure 12. The
di�erent bands of results correspond to di�erent CP branches [46]. The intrinsic
CP charge of the neutrinos has four possible cases, denoted ηi: η1 = (−,+,+),
η2 = (+,−,+), η3 = (+,+,−), and η1 = (+,+,+) [46]. From the results in Figure
12, we see that the η2 case seems to be preferred.

The Z3 �avor symmetry model can accommodate the most recent neutrino
mass and mixing results, but does rely on introducing a new symmetry, which is
as physically unmotivated as the R-parity symmetry it is meant to replace. In
addition, baryon number conservation is manually forbidden instead of a natural
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Figure 12: A plot of sin2 θ23 as a function of sin2 θ13. The dashed lines are the
best-�t values while the shaded areas correspond to allowed regions. The blue
dots are for the η1 CP branch, red dots for η2 and pink for η3 (no points for the
η4 case) [46].

consequence of the theory. The last two sections will examine theories where any
additional symmetries are accidental.

5.4 Models with Additional Fields

Instead of imposing a �avor symmetry, adding sterile neutrino �elds to the MSSM
is the third general way of generating neutrino mass in /Rp theories. This method
was introduced in Section 3.1.2 to give light neutrinos mass via the seesaw mech-
anism; in this section, we will o�er some justi�cation as to why and how these
new �elds can be added. In both cases, the additional �elds also serve to solve a
problem within supersymmetry.

5.4.1 Minimal Flavor Violation

We can modify the MSSM by requiring minimal �avor violation (MFV), which
in turn generates R-parity violation and neutrino mass. Minimal �avor violation
is a principle rather than a strict symmetry, but has the same desired result of
constraining the MSSM to phenomenological limits.

While supersymmetry has several attractive features, such as the solution to the
gauge hierarchy problem, gauge coupling uni�cation and a dark matter candidate,
the generic theory also allows for some undesirable �avor and CP violating e�ects
[45]. A natural solution to the �avor problem is the idea of minimal �avor violation,
which states that all �avor and CP-violating interactions arise from the known,
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Standard Model Yukawa couplings [3]. The MSSM needs additional assumptions
to be made �phenomenologically acceptable:� the usual assumptions are R-parity
and �avor universality [18]. We have been using �avor universality throughout this
paper, which asserts that all the soft symmetry-breaking masses are �avor universal
at a scale mGUT and the coupling constants A in Equation 112 are proportional
to the λ couplings in the superpotential. We can replace these two assumptions
with one: minimal �avor violation.

Minimal �avor violation can be imposed on the Standard Model as well as the
MSSM, so we will examine this simpler case �rst. As we know, the Standard Model
fermions are in two SU(2)L doublets, Qm and Lm, and three singlets, um, dm and
em. The global �avor symmetry of the Standard Model can be written as

GF ≡ SU(3)3
q × SU(3)2

` × U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)ER (186)

where the �ve U(1) charges are associated with baryon number B, lepton number
L, hypercharge Y , the Peccei-Quinn symmetry present in models with two Higgs
doublets and the global rotation of the SU(2)L singlet [3]. The SU(3) groups have
the form

SU(3)3
q = SU(3)Qm × SU(3)um × SU(3)dm (187)

SU(3)3
` = SU(3)Lm × SU(3)em ; (188)

note that these are SU(3) because each describes the three generations of particles
[3]. The group SU(3)3

q × SU(3)2
` × U(1)PQ × U(1)ER is broken in the Standard

Model by the Yukawa interactions; for minimal �avor violation, these are the only
interactions that break the �avor symmetry [18]. We introduce the spurion �elds
Yu, Yd and Ye, which transform as

Yu ∼ (3, 3̄,1)SU(3)3q
, Yd ∼ (3, 3̄,1)SU(3)3q

, Ye ∼ (3, 3̄)SU(3)2`
, (189)

in order to recover �avor invariance [3]. The background values of these �elds can
be rotated into

Yu = V †λu, Yd = λd, YL = λ`, (190)

where the λ terms are diagonal and V is the CKM matrix [3]. Recall that the
CKM matrix controls the mixing between the quark generations and has the form

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

−iδ s23c13

s12s23 − c12c23s13e
−iδ −c12s23 − s12c23c13e

−iδ c23c13

 . (191)

For minimal �avor violation, we require that all higher-dimension operators are
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constructed from Standard Model and Y spurion �elds only and invariant under
CP and GF ; the Yukawa couplings completely determine any �avor violation and
the CKM phase δ completely determines any CP violation [3]. In supersymmetry,
the Y �elds appear in the MSSM superpotential Yukawa terms (see Equation 102),
so we assign them to a chiral super�eld representation; we expect that at the UV
scale the spurions would manifest as the v.e.v.s of a heavy chiral super�eld [18].
As a result, the conjugate couplings Y † are not allowed in the superpotential,
which greatly limits the number of possible terms. In addition, any allowed terms,
including potentially problematic terms, are suppressed by the Yukawa couplings
and CKM matrix. Therefore, the imposition of MFV solves the problems that
both R-parity and �avor universality were meant to address.

However, all the allowed terms in the superpotential leave the lepton number
symmetry U(1)L unbroken so we must introduce additional spurion �elds, similar
to Section 3.1.1, in order to generate neutrino mass [18]. The three additional
sterile neutrinos N gain Majorana masses at a heavy scale MR and generate mass
for the left-handed neutrinos through the superpotential

WN = YeLmHdē+ YNLmHuN̄ +
1

2
MNN̄N̄ , (192)

where the sterile neutrino masses MN ∼ MR [18]. The new Yukawa coupling YN
expands the lepton sector symmetry to SU(3)Lm × SU(3)em × SU(3)N and gives
the left-handed neutrinos a Majorana mass on the order of Y 2

Nv
2/MR [18]. Since

MR is large, the neutrino masses are small, as desired. The terms in WN imply
the presence of two new spurions: YN and MN . Note that unlike the rest of the
spurion Yukawa couplings, MN has dimensions of mass and so we will expand it
to

µN ≡
1

ΛN

MN , (193)

where ΛR is an unknown mass scale that satis�es MR . ΛR and ΛR � msoft [18].
We can �nd the �avor singlets involving the sterile neutrino parameters and,

from these, construct only the λijkLiLj ēk term in the lepton number-violating
superpotential in Equation 108 [18]. However, the bilinear term εLHu term is also
generated: though it is forbidden by the Z3 lepton number symmetry present in
MFV models, this symmetry is broken by MN . The superpotential thus has the
form

WLNV =
1

2ΛR

wLL
(
ỸNMN ỸN

)
Yeē+msoft

(
V†
)a
LaHu (194)

where Ỹ ≡ (detY )Y −1, w is unknown and V is composed of the spurion �elds [18].
The B term in the soft supersymmetry breaking sector is also generated because
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of lepton number symmetry breaking, yielding

LMFV
soft ⊃ m2

soft

(
V†
)a
L̃aHu + h.c. (195)

which leads to the left-handed sneutrino gaining a v.e.v. of 〈ν̃〉 ∼ −vuVa [18]. As
before, the sneutrino v.e.v.s break lepton number and generate gaugino-Higgsino-
lepton mixings, and so we have regained the e�ects of R-parity violation through
MFV.

We can use the seesaw mechanism to generate neutrino mass by two di�erent
methods. The gaugino-lepton mixing term generated by the sneutrino v.e.v. is
approximately −vuλ

(
V†L

)
+ c.c. and can contribute additional mass to the left-

handed neutrinos via the seesaw mechanism [18]. This contribution is of the order

δmν ∼
V2v2

u

mλ

, (196)

which we estimate to be on the order of 1 eV [18]. However, the imposition of
realistic proton decays will place a strong bound on V to be small and so these
seesaw contributions are negligible [18]. If we instead integrate out the heavy
neutrinos and only consider a theory below theMR scale, we �nd the only one term
YNM

−1
N Y >N to be relevant for neutrino mass, giving a more restrictive theory for

lepton number violation [18]. This term is analagous to the Type I seesaw formula
in Equation 71 and so we can proceed as in Section 3.1.2 to �nd expressions for
the light neutrino masses.

5.4.2 The µνSSM

Lastly, we will look at the µνSSM, which generates neutrino mass with the addition
of right-handed neutrino super�elds, similar to the previous section. Unlike the
MFV model, though, the µνSSM is constructed to solve the µ problem instead of
�avor or CP violation. Recall that the µ problem states that the supersymmetry-
preserving parameter µ is correlated to a soft supersymmetry-breaking parameter,
and it is also too small to account for the observed Higgs mass. Instead of relying
on R-parity for an explanation, we will require that the v.e.v.s of some new �elds
generate the µ-term after symmetry breaking, hence the name �µ (terms) from
ν (v.e.v.s) Supersymmetric Standard Model� [27]. We mentioned one solution in
Section 3.3.3, the NMSSM, which adds only one �eld but fails to explain neutrino
masses and mixings. The BRVP, while it can generate the correct results, only
exacerbates the µ problem as it adds three new bilinear terms [43]. Therefore, we
look to a new theory, the µνSSM, which introduces three sterile neutrinos ν̂ci and
provides an explanation for even the most recent neutrino observations.

As always, we de�ne the theory by its superpotential �rst. The µνSSM adds
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three neutrinos, resulting in a new Yukawa term and two trilinear terms involving
the sterile neutrinos and the Higgs �elds:

WµνSSM =εab

(
Y ij
u Q̂

a
i Ĥ

b
uû

c
j + Y ij

d Ĥ
a
d Q̂

b
i d̂
c
j + Y ij

e Ĥ
a
d L̂

b
i ê
c
j + Y ij

ν L̂
a
i Ĥ

b
uν̂

c
j

)
− εabλiν̂ci Ĥa

d Ĥ
b
u +

1

3
κijkν̂

c
i ν̂

c
j ν̂

c
k, (197)

where Y ij are matrices, λi is a vector, and κijk is a symmetric tensor [23]. The
new Yukawa term generates Dirac masses for the neutrinos, mij

D = Y ij
ν v2, and the

terms in the second line of Equation 197 breaks lepton number and R-parity ex-

plicitly. Because of explicit lepton number breaking no majoron is generated after
symmetry breaking, and because of explicit R-parity breaking the phenomenology
of the µνSSM will be much di�erent from the MSSM [40]. In addition, the κ term
forbids an unwanted axion associated with a global U(1) breaking [27]. The size
of the breaking can be determined by realizing that in the Yν → 0 limit, the model
is equal to the NMSSM with conserved R-parity (as the ν̂c are now merely singlet
super�elds) [43]. With the Yν nonzero, the ν̂c �elds are right-handed neutrinos,
thus breaking R-parity. This breaking generates an electroweak scale seesaw (ex-
plained later) and so Yν . 10−6 to generate correct neutrino masses; this value is
acceptable as the electron coupling Ye is on the same scale [43].

Note that the superpotential contains only trilinear terms; the MSSM µ term
µĤuĤd is not present. In order to exclude this term we impose a Z3 symmetry
on the theory, which is justi�ed as the low-energy limit of string constructions21,
have this symmetry [40]. The Z3 symmetry leads to a cosmological domain wall
problem, but this issue can be resolved with small non-renormalizable operators
that break the symmetry and thus undo the problematic degeneracy of the three
original v.e.v.s [43]. However, as we mentioned in Section 5.2.1 trilinear /Rp terms
generate loop-level bilinear terms, so this theory will inevitably have some bilinear
terms.

After spontaneous electroweak symmetry breaking, the neutral scalar �elds
adopt the following vacuum expectation values:

〈H0
1 〉 = v1, 〈H0

2 〉 = v2, 〈ν̃i〉 = νi, 〈ν̃ci 〉 = νci , (198)

where ν̃ are the scalar component of the neutrino super�elds and we are in the
electroweak (not mass) basis [40]. The v.e.v. of ν̂c generates the e�ective bilinear
terms εiĤuĤi and µĤdĤu (where the �rst is the BRPV bilinear term and the
second is the MSSM µ term) and determines the coe�cients: εi = Y ij

ν ν
c
j and

µ = λiν
c
i [58]. Because we expect ν

c to be at the electroweak scale and λ ∼ O(1),

21These are relevant as supersymmetry breaking is mediated by gravity.
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µ is at the electroweak scale, and we have therefore found a solution to the µ
problem [27]. The parameter µ now has no correlation to the soft symmetry-
breaking terms.

With the v.e.v.s, we now �nd the tree-level neutral scalar potential and the
minimization conditions, eliminating the soft masses from the theory in favor of
the v.e.v.s [43]. One of the minimization conditions is∑

j

Y ij
ν v2ζ

j + γgξvνi + ricη +
∑
j

(
m2
L̃

)ji
νj +

∑
j

(AνYν)
ij νcjv2 = 0 (199)

where ζ, γ, etc. are functions of the v.e.v.s and couplings [27]. Recall that Yν is
very small in order to generate correct neutrino masses, and as Yν → 0, we see
in Equation 199 that νi → 0. Therefore, νi must be small as well. By ignoring
second-order terms of Yν and νi, we can solve Equation 199:

νi ≈

(
Y ik
ν u

kj
c v2 − µv1Y

ij
ν + (AνYν)

ijv2

γg(v2
1 − v2

2) +m2
L̃

)
νcj +

(
Y ij
ν λ

jv1v
2
2

γg(v2
1 − v2

2) +m2
L̃

)
(200)

where Aν is a parameter of the theory, uijc =
∑

k κ
ijkvck and γg = (g2

1 + g2
2)/4 [27].

From this equation, we see that the left-handed sneutrino v.e.v. can be nonzero
even when the singlet sneutrinos have no v.e.v.s. However, the singlet sneutrino
v.e.v.s are required in order to generate the µ terms, so the left-handed sneutrino
v.e.v.s must depend on the singlet sneutrinos.

As before, the neutrinos and neutralinos mix in the µνSSM. The neutral
fermion mass term in the µνSSM Lagrangian has the form

Lfermion = −1

2
χ

′0>MNχ
′0 + h.c. (201)

where χ
′0> =

(
B̃0, W̃ 0, H̃d, H̃u, νRi , νLi

)
is the weak interaction basis [58]. The

neutral fermion mass matrix MN is now 10× 10, with the four neutralinos, three
left-handed neutrinos and three new sterile neutrinos, but has the same form as
Equation 147:

MN =

(
Mχ0

R
m>

m 03×3

)
(202)

where Mχ0
R
is the neutralino mass matrix with the right-handed neutrinos and m
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is the neutralino-neutrino mixing matrix [58]. These matrices are

Mχ0
R

=



M1 0 − g1√
2
vd

g1√
2
vu 0 0 0

0 M2
g2√

2
vd − g2√

2
vu 0 0 0

− g1√
2
vd

g2√
2
vd 0 −λiνci −λ1vu −λ2vu −λ3vu

g1√
2
vu − g2√

2
vu −λiνci 0 y1 y2 y3

0 0 −λ1vu y1 2κ11jν
c
j 2κ12jν

c
j 2κ13jν

c
j

0 0 −λ2vu y2 2κ21jν
c
j 2κ22jν

c
j 2κ23jν

c
j

0 0 −λ3vu y3 2κ31jν
c
j 2κ32jν

c
j 2κ33jν

c
j


(203)

and

m =

−
g1√

2
ν1

g2√
2
ν1 0 Y 1i

ν ν
c
i Y 11

ν vu Y 12
ν vu Y 13

ν vu
− g1√

2
ν2

g2√
2
ν2 0 Y 2i

ν ν
c
i Y 21

ν vu Y 22
ν vu Y 23

ν vu
− g1√

2
ν3

g2√
2
ν3 0 Y 3i

ν ν
c
i Y 31

ν vu Y 32
ν vu Y 33

ν vu

 (204)

where yi = −λivd + Y ij
ν ν

j [58].
Note that though the terms ofMχ0

R
are at the electroweak scale, the terms of m

are small because of Yν and νi and the seesaw structure is preserved. In fact, the
electroweak seesaw matrix is always present in this theory. With a purely Dirac
mass for the neutrinos, we get Yν ∼ 10−13, much smaller than the Yν ∼ Ye ∼
10−6 needed in a theory with an electroweak seesaw and the associated Majorana
neutrino mass contributions [40]. Since we want Yν ∼ Ye, the electroweak seesaw
form of the neutrino mass matrix is important.

We �nd the e�ective mass matrix to be of the ususal Type I seesaw form

meff = −mM−1
χ0
R
m> (205)

and the diagonalization of this matrix gives the light neutrino masses. The masses
squared are most relevant since the mass squared di�erence is the observable in
experiments, so we de�ne the mass squared matrix to be H = m†effmeff . The
eigenvalues of H are thus the masses squared [58]:

m2
1 =

a

3
− 1

3
p
(

cosφ+
√

3 sinφ
)

(206)

m2
2 =

a

3
− 1

3
p
(

cosφ−
√

3 sinφ
)

(207)

m2
3 =

a

3
+

2

3
p cosφ (208)
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where

p =
√
a2 − 3b

φ =
1

3
arccos

(
1

p2

(
a3 − 9

2
ab+

27

2
c

))
a = Tr(H)

b = H11H22 +H11H33 +H22H33 −H2
12 −H2

13 −H2
23

c = detH. (209)

In order to get correct neutrino results, we require that m2
1 < m2

2 < m2
3. With

this restriction, the neutrino mass spectrum can have either normal or inverted
ordering [58]:

• Normal ordering (mν1 < mν2 < mν3):

m2
ν1

= m2
1 m2

ν2
= m2

2 m2
ν3

= m2
3

∆m2
12 =

2√
3
p sinφ > 0

∆m2
13 = p

(
cosφ+

1√
3

sinφ

)
> 0

• Inverted ordering (mν3 < mν2 < mν1):

m2
ν3

= m2
1 m2

ν1
= m2

2 m2
ν2

= m2
3

∆m2
12 = p

(
cosφ− 1√

3
sinφ

)
> 0

∆m2
13 = −p

(
cosφ+

1√
3

sinφ

)
< 0

We can also �nd expressions for the mixing angles from the eigenvectors of H.
After normalizing the eigenvectors,

sin θ13 = | (Uν)13 | (210)

sin θ23 =
| (Uν)23 |√

1− | (Uν)13 |2
(211)

sin θ12 =
| (Uν)12 |√

1− | (Uν)13 |2
(212)

where (Uν)ij are the components of the eigenvalues and are functions ofH elements
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and m2
ν [58]. Since we know θ13 is small (but not zero), (Uν)13 is also small;

therefore the denominator for sin θ23 and sin θ12 is close to one. From this, we
determine that (Uν)23 ∼

1√
2
and (Uν)12 ∼

1
2
.

To examine more precisely the value of the neutrino mass and mixings in this
theory, we must assign speci�c values to the free parameters. These parameters
are

λi, κiii, tan β, ν1, ν3, ν
c
i , Aλi , Aκiii , Aνii (213)

under the MFV assumption, where we de�ne ν1 = ν2 6= ν3 in order to get the
correct neutrino mass hierarchy [23,58]. Choosing the parameters values carefully,
we �nd that this theory can account for the observed neutrino masses and mixings.

6 Phenomenology of R-Parity

With all the di�erent R-parity violating theories we have discussed, experimental
results will reveal which one is most accurate. Each theory predicts the correct
neutrino masses and mixings, so the di�erentiating factor will be the decay of
the lightest supersymmetric particle. Recall that R-parity violation requires that
the LSP is not stable, as it is in the MSSM, but the exact form and branching
ratio can vary from theory to theory. However, we will mention one case where
an R-parity violating theory resembles the MSSM, necessitating careful analysis
of future results. Thus far the LHC and other experiments have not observed any
signs of supersymmetry, but the /RP theories can account for this null result. The
current LHC results do place some restrictions on /Rp supersymmetry couplings,
which we will brie�y discuss in the last section.

6.1 Collider Signatures of /Rp Theories

As discussed previously, one of the major predictions of R-parity violating the-
ories is the decay of the lightest supersymmetric particle, the LSP. In collider
experiments we want to observe decays that result in Standard Model particles
in distinct combinations or energies. Various supersymmetric particles can be the
LSP, as shown in Table 9, but the neutralino generates the most exotic signals [49].
The products of neutralino decays are listed in Table 10. The lifetime of the LSP
depends on the particle content of the supersymmetric theory and the value of the
/Rp couplings, and since neutrino experiments point to small couplings the LSP
lifetime is long, leading to displaced vertices. Physically, displaced vertices are
decays that occur up to tens of centimeters from the orginal pp interaction inside
the detector. Both vertices of this type and the particles produced in the decay
can be signatures of physics beyond the Standard Model.
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LSP Decays

t̃1 tν̄, jν̄, be+
i , je

+
i

b̃1 bν̄, jν̄, te−i , je
−
i

χ̃0
1 e±i W, νZ, e

±
i H

∓, νH0
i

χ̃±1 e±i Z, νW
±, e±i H

0
i , νH

0
i

τ̃± e±i ν, q̄q
′, hW±

ν̃3 q̄q, ēiej,WW,ZZ, hh,HH

Table 9: Possible LSPs and their main decay products [49].

Name of Decay Decay Products

Leptonic: `` ν`+`− for ` = e, µ
Leptonic: ττ ντ+τ−

Leptonic: τ` τν`
Semi-leptonic: jj νq̄q
Semi-leptonic: τjj τ q̄q′

Semi-leptonic: `jj `q̄q′

Semi-leptonic: bb νb̄b
Invisible ννν

Table 10: The main decays of χ̃0
1 [12].

6.1.1 Minimal U(1)B−L Theory

In the minimal U(1)B−L theory we introduced and broke a new symmetry, replac-
ing R-parity and leading to the Z ′-boson. This particle can be used in slepton
production, which then decays as follows [49]:

pp→ γ, Z, Z ′ → ẽ+
i ẽ
−
i → e±i χ̃

0
1e
∓
i χ̃

0
1 → e±i e

∓
i e
±
j e
±
kW

±W∓. (214)

After the W -bosons decay into hadrons (producing four jets), we are left with four
leptons, three of one charge and one of opposite charge.

First, we estimate the cross-section for the �rst decay of the chain, namely
pp → γ, Z, Z ′ → ẽ+

i ẽ
−
i . Assuming the mass of Z ′-boson is 3 TeV and gB−L = 0.3,

the cross-section for this decay as a function of mẽ is found in Figure 13a [49]. The
decay is most likely when the mass of the selectron is small. With this information
in place, we can now look at the decay product: the four leptons. The branching
ratio of the decay can be calculated based on the cross-section results and are also
dependent on mẽ. The number of expected events in the LHC (at

√
s = 14 TeV)

is shown in Figure 13b. Regardless of the selectron mass or branching ratio, this
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(a) The cross-section of pp→ γ, Z, Z ′ →
ẽ+i ẽ

−
i as a function of the slepton mass.

(b) The number of four lepton events at
14 TeV.

Figure 13: Predictions for the minimal U(1)B−L theory [49].

decay will be rare and therefore di�cult to observe. However, at the upgraded
14 TeV LHC the expected luminosity is around 80 fb−1, so the number of events
indicated in Figure 13b will be multiplied by about four.

6.1.2 Bilinear /Rp

The bilinear R-parity violation model does not contain the additional Z ′-boson,
but has similar restrictions as the U(1)B−L theory. The /Rp couplings must nat-
urally still be small and the decaying LSP is still a major feature of the theory.
In addition, the BRPV generates displaced vertices because the trilinear couplings
are very small [12]. The BRPV, using supergravity to softly break supersymmetry,
has eleven free parameters:

m0,m1/2, tan β, sign(µ), A0, εi,Λi (215)

where m0 is the gaugino mass, m1/2 is the soft scalar supersymmetry-breaking
mass, and A0 is the trilinear term [12]. The parameters ε and Λ, which we discussed
in Section 5.2.1, a�ect the decay length of the LSP but not the cross-section, as
shown in Figure 14a [12]. Therefore, the cross-section of the LSP decay depends,
as expected, primarily on m0. Assuming A0 = −100 GeV, tan β = 10, positive
µ, m1/2 = 400 GeV and that the LSP is a neutralino, the branching ratio of
various decay channels can be found with the results in Figure 14b [12]. In it, ε
and Λ have been �xed at optimal values to generate the most accurate neutrino
oscillation results. For small m0, the neutralino is most likely to take a decay path
involving leptons, particularily τ , while heavierm0 values generate decays involving
quarks. This result is sensible as quarks are generally heavier than leptons and
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(a) The decay length of the LSP as a
function of the gaugino mass. The bands
are limited to the correct neutrino val-
ues, and we note that this plot is valid
for any ε and Λ.

(b) The LSP decay branching ratio for
optimal values of ε and Λ. The di�erent
lines depict various decay channels.

Figure 14: Predictions for the BRPV model [12].

are therefore more likely to be produced in decays involving similarily heavy or
energetic particles.

Because of the LSP decays, the popular method of looking for supersymmetry
through missing traverse energy is weakened. The products of the LSP decay are
Standard Model particles and so their energy will be accounted for in the collider,
meaning that less of it is �missing.� Searches for R-parity violating supersymme-
try must then take a di�erent approach, looking for distinct decay patterns and
displaced vertices instead of missing energy.

6.2 Possible Similarities to the MSSM

A complication to the observation of R-parity violating theories is the fact that it
may look very similar to the MSSM without /Rp. One of the primary consequences
of R-parity conservation is a stable LSP, but with R-parity violation the LSP can
decay in such a way as to be invisible. We take the LSP to be a neutralino22

χ̃0 which, in spontanteous /Rp, can decay into the majoron J and neutrino as
χ̃0 → Jν [35]. This decay mode is invisible as the majoron is a component of the
Z ′-boson and the neutrino is indistinguishable from those from other sources. We
will show that in a certain model this decay mode is the dominant one, thereby

22Recent results have eliminated the neutralino as a possible dark matter candidate, but the
gravitino, axion or axino remain viable options in /Rp theories [35].
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making the LSP appear as if it is stable.
In this model, we add three SU(2)×U(1) singlets to the MSSM: ν̂c with lepton

number L = −1, Ŝ with L = 1, and Φ̂ with L = 0 [36]. The superpotential for
this theory is

W =Y ij
u Q̂iûjĤu + Y ij

d Q̂id̂jĤd + Y ij
e L̂iêjĤd

+ Y i
ν L̂iν̂

cĤu − Y0ĤdĤuΦ̂ + Y Φ̂ν̂cŜ +
λ

3!
Φ̂3 : (216)

the �rst line is the MSSM superpotential, the �rst term of the second line �xes
lepton number, the second term generates a µ term, and the last two terms give
mass to the new singlets once Φ̂ has a v.e.v. [35]. Note that this superpotential does
not contain any terms with dimensions of mass, thereby avoiding the µ problem
[35]. The theory also contains soft symmetry breaking terms:

Lsoft =|Y ΦS̃ + Y i
ν ν̃iHu +MRS̃|2 + |Y0ΦHu + µ̂Hu|2 + |Y Φν̃c +MRν̃

c|2

+ | − Y0ΦHd = µ̂Hd + Y i
ν ν̃iν̃

c|2 + | − Y0HuHd + Y ν̃cS̃ − δ2 +MΦΦ +
λ

2
Φ2|2

+ . . . (217)

where the ellipsis represents terms summed over the gauge group indices i and α
[36]. Lepton number is conserved in the superpotential terms, but after electroweak
symmetry breaking, some particles gain v.e.v.s: the Higgs boson, sneutrinos, and
new singlets 〈Φ〉 = vΦ/

√
2, 〈ν̃c〉 = vR/

√
2, and 〈S̃〉 = vS/

√
2 [35]. As before,

vR, vL and now vS violate lepton number and R-parity, and with R-parity broken
Majorana neutrino masses are generated. The e�ective mass matrix is(

meff
ν

)
= aΛiΛj + b (εiΛj + εjΛi) + cεiεj (218)

where Λi = εvd + µvL, εi = YνvR/
√

2, µ = µ̂ + Y0vΦ/
√

2 and a, b, and c depend
on the v.e.v.s, Y0 and the fermion mass matrix [33]. From neutrino physics, the
parameters Λ and ε are constrained; speci�cally, Λi/m

2
SUSY and |εi/µ| are small

[35]. With these requirements as well as imposing vL � lvR and vL/V < 1, we
�nd an expression for the majoron:

J '
(
−vdv2

L

V v2
,
vuv

2
L

V v2
,
v2
L1

V
,
v2
L2

V
,
v2
L3

V
, 0,

v2
s

V
,
−v2

R

V

)
(219)

where V 2 = v2
S + v2

R and J is in the basis of Im
(
H0
d , H

0
u, ν̃1, ν̃2, ν̃3,Φ, S̃, ν̃

c
)
[35].

The important result here is that the majoron is a gauge singlet.
We now combine the information about the neutrinos and majoron to discuss
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Figure 15: Plot of the visible decay modes of the neutralino as a function of
|hν | [35].

their interaction. In general this coupling is quite complicated, but in the limit
where vR, vS →∞ the approximate form is

Cχ̃0νkJ '
U>ν · ~ε
V

N14 +
U>ν · ~νL
V

(g′N11 − gN12) + . . . (220)

where Uν is the matrix that diagonalizes the neutrino mass matrix and the Ns are
coe�cients [35]. Of the three singlets, only ν̂c is required to be present; if Ŝ is
absent, the coupling behaves in the same way. From Equations 218 and 220, we see

that the most important parameters are |Y ν | =
√∑

i (h
i
ν)

2 and vR [35]. Therefore,

the plot in Figure 15 shows the sum over the neutralino decay branching ratios
that contain a visible particle as a function of |Y ν | = |hν |. The plot shows that,
out of the expected 2.5× 107 neutralinos at the LHC, only 100 will decay visibly
for |hν | ≤ 2.5 × 10−3 [35]. In addition the invisible decay width of the neutralino
does not depend on any MSSM parameters [35]. As a result, it will appear that
the neutralino does not decay, as is the case in the MSSM.

6.3 LHC Results

Though the LHC has not yielded any results beyond the expectations of the Stan-
dard Model, we can place bounds on the /Rp couplings λ and λ′, which come from
various decay channels.

A general area of experimental interest is the production and decay of sleptons
into Standard Model particles. In this section, we will look at sleptons produced
by the λ′ijkLiQjD̄k term. These sparticles are formed, via this term, by

ūj + dk → ¯̀−
i (221)
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dk

ūjūj

˜̀−
i dk

(a) Diagram for dijet production. (b) The upper bounds given by the ATLAS exper-
iment on λ′1jk couplings [21].

Figure 16: Diagram and results for the slepton dijet decay channel.

and can then decay by the same term as

¯̀−
i → ūjdk (222)

or to neutralinos and charginos by

¯̀−
i →

{
`−i χ

0
j

νiχ
−
j

; (223)

note that sleptons can be produced and decay via other channels as well [21].
Equation 221 implies that any combination of quarks can produce sleptons, but
we only consider coupling to the �rst two generations (j, k = 1, 2) as the top
and bottom quarks are too heavy. The cross-sections of these processes depend
on which quarks are involved (that is, which coupling λ′) and the mass of the
slepton that is produced. Predictably, the heavier the slepton, the smaller the
cross-section.

The decay channels of the slepton are slightly more complex. The decay via
the /Rp term leads to the production of two jets, as pictured in Figure 16a. Since
this process depends on the same term, we get constraints on the same coupling
constant λ′. If we estimate the slepton mass m˜̀ = 500 GeV and λ′ = 0.05, we get
a decay width of Γ(˜̀−

i → ūjdk) ≈ 75 MeV, which leads to a narrow resonance in
the invariant mass spectrum of the dijets [21]. However, we need a m˜̀ > 1 TeV
in order to have this process be visible amidst the large QCD background at the
LHC [21]. Therefore, the plot in Figure 16b shows the dependence of the coupling
λ′1jk ×branching ratio of dijet production on the slepton mass from 1 TeV upward.
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Figure 17: The upper bounds given by the ATLAS experiment on λ′1jk couplings
for a bino-like neutralino [21].

As seen in Equation 223, sleptons can also decay into neutralinos. These neu-
tralinos can be either bino-like, wino-like, or higgsino-like; each option has a dif-
ferent mass hierarchy between the four neutralinos, µ, and m˜̀ [21]. The bino-like
contribution is most signi�cant in the MSSM, so we will focus on it. For bino-like
neutralino models, we have23 M2, µ � M1,m˜̀ [21]. A major signature for neu-
tralino decay is the presence of a muon pair µµ̄, both with the same sign.24 The µ̄−

is generated by the slepton production in Equation 221 while the µ− is generated
by the slepton decay in Equation 223 [21]. This decay places upper limits on the
/Rp coupling λ

′
2jk where j, k = 1, 2 [21]. Figure 17 shows these limits as a function

of the slepton and neutralino masses. The coupling is therefore quite small, as the
largest upper bound is only 0.006.

LHC searches have also explored the possibility of eµ resonance, which is the
decay of the LSP ν̃τ to eµ as pictured in Figure 18a. All couplings except λ′311 and

23Recall that M1 is the bino mass and M2 is the wino mass.
24This muon pair is distinct as pair-produced muons will naturally be of opposite sign.
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ν̃τ
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(a) Diagram for eµ resonance. The
coupling λ′311 acts on the left-hand
vertex.

(b) The upper bounds given by the ATLAS exper-
iment on λ′1jk couplings [37].

Figure 18: Diagram and results for λ′311, imposed by eµ resonance.

λ312 are set to zero. The candidate e and µ particles have traverse momentum> 25
GeV, pseudorapidity |η| . 2.4, are separated by

√
∆η2 + ∆φ2 > 0.2, and have

opposite charges [37]. No events of this type were observed at the LHC, which sets
an upper limit on the product of the cross-section σ(pp → ν̃τ ) and BR(ν̃τ → eµ)
[37]. In turn, this limit places a bound on the couplings as a function of mν̃τ ;
this dependency of λ′311 on this mass and the other coupling λ312 is pictured in
Figure 18b. From this graph, we can conclude that the mass of the LSP should
not be more than about 1400 GeV at the maximum else the λ′311 coupling would
be unphysically large.

In addition to slepton channels, the LHC also examined displaced vertices.
These vertices may be the result of an LSP decay due to a non-zero coupling
λ′2ij as in Figure 19a [37]. To look for these decays, several selection criteria are
implemented but no vertices are observed to �t [37]. The null observation places
restrictions on the cross-section×branching fraction of the process, dependent on
the neutralino and squark masses; this result is shown in Figure 19b [37]. Though
no results beyond the expectation of the Standard Model have been observed, we
are optimistic that future experiments at the LHC after its upgrade may yield
results that support supersymmetry and R-parity violation.

7 Conclusion

In this paper, we have seen that the Standard Model is inadequate for explaining
the neutrino mass that is predicted by the observation of neutrino oscillations.
Supersymmetry is proposed to solve this and other problems, but some new is-
sues arise, notably fast proton decay. In order to restrict the MSSM R-parity

74



χ̃0

qj

µ

µ̃ qi

(a) Diagram for displaced vertex with
two jets. The coupling λ′2ij acts on
the right-hand vertex.

(b) The upper bounds given by the ATLAS ex-
periment on the cross-section times the branching
fraction as a function of the χ̃0 lifetime [37].

Figure 19: Diagram and results from displaced vertices searches.

is imposed, which has the consequence of conserving baryon and lepton number.
However, for neutrino mass lepton number must be violated and so we abandon
R-parity in favor of other methods of constraining the proton decay. We can either
explicitly introduce R-parity violating terms into the superpotential of the MSSM
or generate these terms spontaneously by breaking a new U(1) symmetry. The
new terms are either bilinear or trilinear, and contribute to neutrino masses at
either the tree or loop level. In most cases the bilinear tree-level contributions are
most signi�cant, but only generate mass for one neutrino; therefore the loop level
contributions are small, but important. We examined the most basic R-parity
violating theory, which only involves bilinear terms, but the introduction of �a-
vor symmetries restrict the theory more adequately and o�er an explanation for
the presence of the R-parity violating terms. In addition, R-parity can be broken
explicitly with the addition of new super�elds a la the seesaw mechanism; this
method provides accurate neutrino masses and mixings at the cost of adding new
�elds to the MSSM. All of these new theories have distinct collider signatures, and
the hope is that we will observe one of them, o�ering more insight into physics
beyond the Standard Model.
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